ResearchSpace

Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study

Show simple item record

dc.contributor.author Opoku, F
dc.contributor.author Govender, Krishna
dc.contributor.author Van Sittert, CGCE
dc.contributor.author Govender, PP
dc.date.accessioned 2017-11-21T10:18:04Z
dc.date.available 2017-11-21T10:18:04Z
dc.date.issued 2018-01
dc.identifier.citation Opoku, F. et al. 2018. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study. Applied Surface Science, vol. 427(B): 487-498 en_US
dc.identifier.issn 0169-4332
dc.identifier.uri http://www.sciencedirect.com/science/article/pii/S016943321732620X
dc.identifier.uri https://doi.org/10.1016/j.apsusc.2017.09.019
dc.identifier.uri http://hdl.handle.net/10204/9808
dc.description Copyright: 2017 Elsevier. Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. For access to the full text item, please consult the publisher's website. en_US
dc.description.abstract Graphite-like carbon nitride (g-C3N4)-based heterostructures have received much attention due to their prominent photocatalytic activity. The g-C3N4/Bi2WO6 and g-C3N4/Bi2MoO6 heterostructures, which follow a typical hetero-junction charge transfer mechanisms show a weak potential for hydrogen evolution and reactive radical generation under visible light irradiation. A mediator-free Z-scheme g- C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures photocatalyst are designed for the first time using first-principles studies. Moreover, theoretical understanding of the underlying mechanism, the effects of interfacial composition and the role the interface play in the overall photoactivity is still unexplained. The calculated band gap of the heterostructures is reduced compared to the bulk Bi2WO6 and Bi2MoO6. In this study, we systematically calculated energy band structure, optical properties and charge transfer of the g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures using the hybrid density functional theory approach. The results show that the charge transfer at the interface of the heterostructures induces a built-in potential, which benefits the separation of photogenerated charge carriers. The g-C3N4/Bi2MoO6(010) heterostructure with more negative adhesion energy (-1.10 eVA-2) is predicted to have a better adsorptive ability and can form more easily compared to the g-C3N4/Bi2WO6(010) interface (-1.16 eVA-2). Therefore, our results show that the g-C3N4 interaction with Bi2MoO6 is stronger than Bi2WO6, which is also verified by the smaller vertical separation (3.25 Å) between Bi2MoO6 and g- C3N4 compared to the g-C3N4/Bi2WO6(010) interface (3.36 Å). The optical absorption verifies that these proposed Z-scheme heterostructures are excellent visible light harvesting semiconductor photocatalyst materials. This enhancement is ascribed to the role of g-C3N4 monolayer as an electron acceptor and the direct Z-scheme charge carrier transfer at the interface of the heterostructures. This work is useful for designing new types of Z-scheme photocatalyst and offers new insight into Z-scheme charge transfer mechanism for applications in the field of solar energy conversion. en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartofseries Worklist;19653
dc.subject Photocatalysis en_US
dc.subject Bi2MoO6 en_US
dc.subject Adhesion energy en_US
dc.subject Hybrid density functional theory en_US
dc.subject Built-in potential en_US
dc.title Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study en_US
dc.type Article en_US
dc.identifier.apacitation Opoku, F., Govender, K., Van Sittert, C., & Govender, P. (2018). Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study. http://hdl.handle.net/10204/9808 en_ZA
dc.identifier.chicagocitation Opoku, F, Krishna Govender, CGCE Van Sittert, and PP Govender "Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study." (2018) http://hdl.handle.net/10204/9808 en_ZA
dc.identifier.vancouvercitation Opoku F, Govender K, Van Sittert C, Govender P. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study. 2018; http://hdl.handle.net/10204/9808. en_ZA
dc.identifier.ris TY - Article AU - Opoku, F AU - Govender, Krishna AU - Van Sittert, CGCE AU - Govender, PP AB - Graphite-like carbon nitride (g-C3N4)-based heterostructures have received much attention due to their prominent photocatalytic activity. The g-C3N4/Bi2WO6 and g-C3N4/Bi2MoO6 heterostructures, which follow a typical hetero-junction charge transfer mechanisms show a weak potential for hydrogen evolution and reactive radical generation under visible light irradiation. A mediator-free Z-scheme g- C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures photocatalyst are designed for the first time using first-principles studies. Moreover, theoretical understanding of the underlying mechanism, the effects of interfacial composition and the role the interface play in the overall photoactivity is still unexplained. The calculated band gap of the heterostructures is reduced compared to the bulk Bi2WO6 and Bi2MoO6. In this study, we systematically calculated energy band structure, optical properties and charge transfer of the g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures using the hybrid density functional theory approach. The results show that the charge transfer at the interface of the heterostructures induces a built-in potential, which benefits the separation of photogenerated charge carriers. The g-C3N4/Bi2MoO6(010) heterostructure with more negative adhesion energy (-1.10 eVA-2) is predicted to have a better adsorptive ability and can form more easily compared to the g-C3N4/Bi2WO6(010) interface (-1.16 eVA-2). Therefore, our results show that the g-C3N4 interaction with Bi2MoO6 is stronger than Bi2WO6, which is also verified by the smaller vertical separation (3.25 Å) between Bi2MoO6 and g- C3N4 compared to the g-C3N4/Bi2WO6(010) interface (3.36 Å). The optical absorption verifies that these proposed Z-scheme heterostructures are excellent visible light harvesting semiconductor photocatalyst materials. This enhancement is ascribed to the role of g-C3N4 monolayer as an electron acceptor and the direct Z-scheme charge carrier transfer at the interface of the heterostructures. This work is useful for designing new types of Z-scheme photocatalyst and offers new insight into Z-scheme charge transfer mechanism for applications in the field of solar energy conversion. DA - 2018-01 DB - ResearchSpace DP - CSIR KW - Photocatalysis KW - Bi2MoO6 KW - Adhesion energy KW - Hybrid density functional theory KW - Built-in potential LK - https://researchspace.csir.co.za PY - 2018 SM - 0169-4332 T1 - Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study TI - Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study UR - http://hdl.handle.net/10204/9808 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record