ResearchSpace

The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes

Show simple item record

dc.contributor.author Khawula, TNY
dc.contributor.author Raju, Kumar
dc.contributor.author Franklyn, PJ
dc.contributor.author Sigalas, I
dc.contributor.author Ozoemena, Kenneth I
dc.date.accessioned 2017-07-28T09:09:12Z
dc.date.available 2017-07-28T09:09:12Z
dc.date.issued 2016-07
dc.identifier.citation Khawula, T.N.Y., Raju, K., Franklyn, P.J. et al. 2016. The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes. Journal of The Electrochemical Society, vol. 163(8): A1927-A1935. doi: 10.1149/2.0601609jes en_US
dc.identifier.issn 0013-4651
dc.identifier.uri doi: 10.1149/2.0601609jes
dc.identifier.uri http://jes.ecsdl.org/content/163/9/A1927.abstract
dc.identifier.uri http://hdl.handle.net/10204/9372
dc.description Copyright: 2016 The Authors. en_US
dc.description.abstract Mesoporous molybdenum disulfide (MoS(sub2)) with different morphologies have been prepared via hydrothermal method using different solvents, water or water/acetone mixture. The MoS(sub2) obtained with water alone gave a graphene-like nanoflakes (g-MoS(sub2)) while the other with water/acetone (1:1 ratio) gave a hollow-like morphology (h-MoS(sub2)). Both materials are modified with carbon nanospheres as conductive material and investigated as symmetric pseudocapacitors in aqueous electrolyte (1 M Na(sub2)SO(sub4) solution). The physico-chemical properties of the MoS(sub2) layered materials have been interrogated using the surface area analysis (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, fourier-transform infrared (FTIR) spectroscopy, and advanced electrochemistry including cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), repetitive electrochemical cycling tests, and electrochemical impedance spectroscopy (EIS). Interestingly, a simple change of synthesis solvents confers on the MoS(sub2) materials different morphologies, surface areas, and structural parameters, correlated by electrochemical capacitive properties. The g-MoS(sub2) exhibits higher surface area, higher capacitance parameters (specific capacitance of 183 F g(sup-1), maximum energy density of 9.2 Wh kg(sup-1) and power density of 2.9 kW kg(sup-1)) but less stable electrochemical cycling compared to the h-MoS(sub2). The findings show promises for the ability to tune the morphology of MoS(sub2) materials for enhanced energy storage. en_US
dc.language.iso en en_US
dc.publisher Electrochemical Society Incorporated en_US
dc.relation.ispartofseries Worklist;17827
dc.subject Mesoporous molybdenum disulfide en_US
dc.subject Electrochemical cycling tests en_US
dc.subject Energy storage en_US
dc.title The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes en_US
dc.type Article en_US
dc.identifier.apacitation Khawula, T., Raju, K., Franklyn, P., Sigalas, I., & Ozoemena, K. I. (2016). The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes. http://hdl.handle.net/10204/9372 en_ZA
dc.identifier.chicagocitation Khawula, TNY, Kumar Raju, PJ Franklyn, I Sigalas, and Kenneth I Ozoemena "The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes." (2016) http://hdl.handle.net/10204/9372 en_ZA
dc.identifier.vancouvercitation Khawula T, Raju K, Franklyn P, Sigalas I, Ozoemena KI. The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes. 2016; http://hdl.handle.net/10204/9372. en_ZA
dc.identifier.ris TY - Article AU - Khawula, TNY AU - Raju, Kumar AU - Franklyn, PJ AU - Sigalas, I AU - Ozoemena, Kenneth I AB - Mesoporous molybdenum disulfide (MoS(sub2)) with different morphologies have been prepared via hydrothermal method using different solvents, water or water/acetone mixture. The MoS(sub2) obtained with water alone gave a graphene-like nanoflakes (g-MoS(sub2)) while the other with water/acetone (1:1 ratio) gave a hollow-like morphology (h-MoS(sub2)). Both materials are modified with carbon nanospheres as conductive material and investigated as symmetric pseudocapacitors in aqueous electrolyte (1 M Na(sub2)SO(sub4) solution). The physico-chemical properties of the MoS(sub2) layered materials have been interrogated using the surface area analysis (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, fourier-transform infrared (FTIR) spectroscopy, and advanced electrochemistry including cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), repetitive electrochemical cycling tests, and electrochemical impedance spectroscopy (EIS). Interestingly, a simple change of synthesis solvents confers on the MoS(sub2) materials different morphologies, surface areas, and structural parameters, correlated by electrochemical capacitive properties. The g-MoS(sub2) exhibits higher surface area, higher capacitance parameters (specific capacitance of 183 F g(sup-1), maximum energy density of 9.2 Wh kg(sup-1) and power density of 2.9 kW kg(sup-1)) but less stable electrochemical cycling compared to the h-MoS(sub2). The findings show promises for the ability to tune the morphology of MoS(sub2) materials for enhanced energy storage. DA - 2016-07 DB - ResearchSpace DP - CSIR KW - Mesoporous molybdenum disulfide KW - Electrochemical cycling tests KW - Energy storage LK - https://researchspace.csir.co.za PY - 2016 SM - 0013-4651 T1 - The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes TI - The effects of morphology re-arrangements on the pseudocapacitive properties of mesoporous molybdenum disulfide (MoS2) nanoflakes UR - http://hdl.handle.net/10204/9372 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record