DSpace
 

Researchspace >
General science, engineering & technology >
General science, engineering & technology >
General science, engineering & technology >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10204/593

Title: Alteration of kafirin and kafirin film structure by heating with microwave energy and tannin complexation
Authors: Byaruhanga, YB
Emmambux, MN
Belton, PS
Wellner, N
Ng, KG
Taylor, JRN
Keywords: SDS-PAGE
FTIR
Fourier transform infrared
Bioplastic films
Protein secondary structure
Disulfide bonds
Kafirin
Chemical sciences
Issue Date: 14-Jun-2006
Publisher: American Chemical Society
Citation: Byaruhanga, YB, et al. 2006. Alteration of kafirin and kafirin film structure by heating with microwave energy and tannin complexation. Journal of Agricultural and Food Chemistry, vol. 54(12), pp 4198-4207
Abstract: Heating with microwave energy and tannin complexation of kafirin both increase the tensile strength of cast kafirin bioplastic films. The effects of these treatments on the molecular structure of kafirin and of kafirin in the film were investigated. SDS-PAGE of heated wet kafirin showed an increase in kafirin oligomers. Disulfide groups increased in heated kafirin and in films made from the heated kafirin. Fourier transform infrared (FTIR) spectroscopy of heated kafirin and films made from the heated kafirin indicated an increase in beta-sheet conformation. In contrast, kafirin complexation with tannic acid (TA) and sorghum condensed tannin (SCT) resulted in a slight decrease in beta-sheet conformation in the kafirin and a larger decrease in the kafirin in the films. Raman spectroscopy showed that, with TA, there was a shift in peak from 1710 to 1728 cm(-1) for kafirin-tannic acid complexes, indicating kafirin and tannic acid interaction. The protein conformational changes presumably facilitated cross-linking between kafirin molecules and/or between kafirin and the tannins. Thus, although both heating with microwave energy and tannin complexation cause cross-linking of kafirin to increase film tensile strength, their effects on kafirin structure appear to be different
Description: Copyright: 2006 American Chemical Society
URI: http://hdl.handle.net/10204/593
ISSN: 0021-8561
Appears in Collections:Polymers and bioceramics
Manufacturing science and technology
General science, engineering & technology

Files in This Item:

File Description SizeFormat
Byaruhanga_2006.pdf260.15 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback