Machio, Christopher NKonadu, DSPotgieter, JHPotgieter-Vermaak, SVan der Merwe, J2013-06-122013-06-122013-01Machio, CN, Konadu, DS, Potgieter, JH, Potgieter-Vermaak, S and Van der Merwe, J. 2013. Corrosion of WC-VC-Co hardmetal in neutral chloride containing media. ISRN Corrosion, 10pphttp://hdl.handle.net/10204/6787Copyright: 2013 Hindawi Publishing Corporation. This is the definitive version of the work.Corrosion is an important surface degradation process in some, if not all, applications of tungsten-carbide-(WC-) cobalt- (Co-) based hardmetals. Applications like tools for machining of metals and for wear resistance in the mining industry expose the WC-Co to fluids that can be corrosive, leading to a reduced useful life. The Co binder is the least corrosion resistant constituent, and efforts to improve WC-Co corrosion resistance have involved altering the chemical composition of the binder by introducing more corrosion resistant elements. Nickel, and chromium especially, and recently, ruthenium have been shown to markedly improve the corrosion resistance of WC-Co-based hardmetalenCorrosionVanadium carbideChromium carbideVanadiumCorrosion resistanceCorrosion of WC-VC-Co hardmetal in neutral chloride containing mediaArticleMachio, C. N., Konadu, D., Potgieter, J., Potgieter-Vermaak, S., & Van der Merwe, J. (2013). Corrosion of WC-VC-Co hardmetal in neutral chloride containing media. http://hdl.handle.net/10204/6787Machio, Christopher N, DS Konadu, JH Potgieter, S Potgieter-Vermaak, and J Van der Merwe "Corrosion of WC-VC-Co hardmetal in neutral chloride containing media." (2013) http://hdl.handle.net/10204/6787Machio CN, Konadu D, Potgieter J, Potgieter-Vermaak S, Van der Merwe J. Corrosion of WC-VC-Co hardmetal in neutral chloride containing media. 2013; http://hdl.handle.net/10204/6787.TY - Article AU - Machio, Christopher N AU - Konadu, DS AU - Potgieter, JH AU - Potgieter-Vermaak, S AU - Van der Merwe, J AB - Corrosion is an important surface degradation process in some, if not all, applications of tungsten-carbide-(WC-) cobalt- (Co-) based hardmetals. Applications like tools for machining of metals and for wear resistance in the mining industry expose the WC-Co to fluids that can be corrosive, leading to a reduced useful life. The Co binder is the least corrosion resistant constituent, and efforts to improve WC-Co corrosion resistance have involved altering the chemical composition of the binder by introducing more corrosion resistant elements. Nickel, and chromium especially, and recently, ruthenium have been shown to markedly improve the corrosion resistance of WC-Co-based hardmetal DA - 2013-01 DB - ResearchSpace DP - CSIR KW - Corrosion KW - Vanadium carbide KW - Chromium carbide KW - Vanadium KW - Corrosion resistance LK - https://researchspace.csir.co.za PY - 2013 T1 - Corrosion of WC-VC-Co hardmetal in neutral chloride containing media TI - Corrosion of WC-VC-Co hardmetal in neutral chloride containing media UR - http://hdl.handle.net/10204/6787 ER -