Ghosh, ASarkar, SMandal, DOrasugh, JTRay, Suprakas SChattopadhyay, D2025-10-062025-10-062025-092666-9781https://doi.org/10.1016/j.nwnano.2025.100144http://hdl.handle.net/10204/14441This review explores the emerging concept of Type-3 diabetes (T3D), an unconventional classification linking insulin resistance with neurodegenerative processes. It explores the intricate molecular mechanisms underlying this association and highlights the importance of early diagnosis for effective intervention. The tale emphasizes the central role of nanomaterials (NMTs) in transforming diagnostic and therapeutic strategies for T3D. Nanoparticles (NPs), nanosensors, and quantum dots (QDs) have emerged as effective tools enabling the precise detection of relevant biomarkers and facilitating early disease identification. Additionally, the multifunctionality of NMTs opens avenues for targeted drug delivery (DD) and imaging modalities, promising a holistic approach to treatment. The integration of nanotechnology enhances diagnostic accuracy and presents innovative therapeutic modalities, ushering in T3D management, which is entering a new era. This comprehensive exploration underscores the potential of NMTs in reshaping our understanding and clinical approaches to this intricate intersection of metabolic and neurodegenerative disorders.FulltextenType 3 DiabetesT3DNeurodegenerationInsulin resistanceNanomaterialsNMTsQuantum DotsQDsNanosensorsPotential application of nanotechnology in Type-3 diabetes: Bridging insulin resistance and neurodegenerationArticlen/a