Dhlamini, Matlotlo MBrent, AC2025-12-042025-12-042025-101996-1073https://doi.org/10.3390/en18205412http://hdl.handle.net/10204/14498The land demands of ground-mounted PV systems raise concerns about competition with agriculture, particularly in regions with limited productive farmland. Agrivoltaics, which integrates solar energy generation with agricultural use, offers a potential solution. While agrivoltaics has been extensively studied, less is known about its feasibility and impacts in complex temperate maritime climates such as Aotearoa New Zealand, in particular, the effects of PV-induced shading on ground-level light availability and vegetation. This study modelled the spatial and seasonal distribution of ground-level irradiation and Photosynthetic Photon Flux Density (PPFD) beneath fixed-tilt PV arrays at the Tauhei solar farm in the Waikato region. It quantifies and maps PPFD to evaluate light conditions and its implications for vegetation growth. The results reveal significant spatial and temporal variation over a year. The under-panel ground irradiance is lower than open-field GHI by 18% (summer), 22% (spring), 16% (autumn), and 3% (winter), and this seasonal reduction translates into PPFD gradients. This variation supports a precision agrivoltaic strategy that zones land based on irradiance levels. By aligning crop types and planting schedules with seasonal light profiles, land productivity and ecological value can be improved. These findings are highly applicable in Aotearoa New Zealand’s pasture-based systems and show that effective light management is critical for agrivoltaic success in temperate maritime climates. This is, to our knowledge, the first spatial PPFD zoning analysis for fixed-tilt agrivoltaics, linking year-round ground-light maps to crop/pasture suitability.FulltextenAgrivoltaicsIrradiance modellingPhotosynthetic Photon Flux DensityThe impact of fixed-Tilt PV arrays on vegetation growth through ground sunlight distribution at a solar farm in Aotearoa New ZealandArticlen/a