A strategic perspective on leading global technology developments in pursuit of digitalisation for industrial development

Dr. Harry Teifel
www.disruptas.com
Looking into the future as an inexact Science…

Don’t look for ideas to confirm your thinking, rather look for trends that will disrupt your thinking.

Rich Simmonds // SavvyCleaner.com
4th Industrial Revolution: Change in Industry and Society

1st
- Mechanization, water power, steam power

2nd
- Mass production, assembly line, electricity
- Capitalism, Systems & Consolidation
- Information Technology

3rd
- Computer and automation

4th
- Cyber Physical Systems
- Digital changes to Industry and Society

2nd Revolution with lasting impact on Industrial Development
2nd Revolution: Laying of the world-view we know today

Before 2nd Industrial Revolution:
- More direct relationship between supplier and buyer
- Craftsmanship as driver / limitation of production
- Capital – although limited – spread across society
- Large-scale capital not as critical for business growth
- More localised production / supply of goods & services

After 2nd Second Revolution:
- Value Chains mostly dominated by large Organisations
- Production driven by high volumes and low cost
- “Capital(ist) class” owns majority of assets / wealth
- Large-scale capital needed for large-scale business
- Globalisation of supply & demand

Large-scale Steel, Agriculture & Textile mills
Large-scale factories focused on economies of scale
Large-scale Electricity and Oil
Advances in Transportation
Separation of Labour and new business organisations

Mass production, assembly line, electricity
Challenge: Managing Disruption and Industrial Development

How to manage Industrial Development in an age of Disruption?

- Market
- Society
Reality: Disrupted World requires new Paradigms for success

Population of 9 - 10 billion by 2050

Global Warming

Human Migration & Urbanization

Trade Wars & Tribalism

Digital Unemployment

Wealth and Age Disparity

Massive Change Drivers

Carbon Tax for Transport

Social / Political upheavals

Review of 2nd Industrial Revolution Principles critical

Expanded *globalization* – although flawed - is the only way for growing future prosperity

Large global companies are key to getting things done and raising huge capital requirements

Fighting *Climate change* is not critical (yet)

Profit maximization *trumps* sustainability

Wealth disparity is a unavoidable by-product of our times and protectionism is always bad

It’s possible to just *add Technologies* - without fixing the major flaws of our current World
2nd Revolution: Increasing challenges into sustainability

But now, the very affluent (the 99.999th percentile) see the largest income growth.

The poor and middle class used to see the largest income growth.

Source: New York Times
Two Disruptive Industrial Development Models evolving

<table>
<thead>
<tr>
<th>4th Industrial Revolution as Game Changer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networks to allow for people, machines and systems to communicate and interact anywhere</td>
</tr>
<tr>
<td>Digitization of physical Systems always for massive elimination of waste and inefficiency</td>
</tr>
<tr>
<td>Connecting parties previously limited by distance, time, trust and inter-compatibility</td>
</tr>
<tr>
<td>Supporting the pooling and interaction of innovation and collaboration as never before</td>
</tr>
<tr>
<td>Allowing Technologies (AI, exoskeletons, etc.) to support with human- and societal challenges</td>
</tr>
</tbody>
</table>

2 Categories of Industrial Development going forward

Largely dictated by Market forces:
- Industry drives
- Regulations / Industrial Policy monitors, enables and restricts as needed

Strategic coordination and collaboration required by State and other stakeholders:
- Technologies evolve
- Active pursuit of opportunities
- Maturing of Technologies
Category 1 Industrial Development: *Market-driven*

Largely dictated by *Market forces*:
- Industry drives
- Regulations / Industrial Policy monitors, enables and restricts as needed
Market Focus: Smart Connected Products & Enterprises

Profit as Primary Driver

Cloud
Robotics
Mixed Reality
Artificial Intelligence
BlockChain et al

Machine to Machine (M2M)
Internet of Things (IoT)
Internet of Everything (IoE)

2 Primary Digitally enabled Industry 4.0 Beneficiation Models (today)

Smart Connected Products
Examples: Smart Home, Smart City, Smart Vehicle

Smart Connected Enterprise/Processes
Examples: Smart Supply Chain Management
Market focus: Improvements through integrated Digitization

1. Establish a Digital Twin of “Things”
 Capture information from the physical world to create a digital replica of the physical attributes critical to performance

2. Analyse, visualise and action
 Machines exchange data and information, allowing for real-time performance monitoring, visualization and intervention of key events

3. Optimise Dynamic Man-Machine-System
 Use of algorithms, AI and other technologies combined with optimal Man-Machine interfaces to improve processes and use of information

4. Deploy other Technologies as needed
Industry Case-study: Quick realisation as new reality

Working Solution within 10 working days incl. AR / VR
Market impact: Massive benefits from Industrial IoT

How manufacturers can realize commercial value from the Internet of Things

- $999 BILLION extra customers
- $810 BILLION reduced time to market
- $675 BILLION reduced costs
- $729 BILLION eliminating waste
- $675 BILLION greater labor efficiencies

27% of Total IOT Benefit of $14 Trillion until 2022
Strategic coordination and collaboration required by State and other key stakeholders:

- Technologies evolve
- New opportunities arise and have to be actively pursued
- Technologies have to be matured and adapted to allow for optimal deployment
Collaboration Focus: Linking sustainability to New-age Tech

United Nations 2030 Sustainable Development Agenda

Multi-stakeholder Industrial Policy Alignment required to achieve optimal Results

Disruptive Technologies as key enablers

Source: UN.org
Emerging Disruptive Technologies with potential to support Sustainable Development

New possibilities and pressure to achieve...

- Decentralized, dispersed and Peer-to-peer Value Creation
- Combining environmental protection with holistic economic beneficiation
- Increased access to economy through disruptive Technologies
- Reduction of wastage & pollution of Supply Chains / globalization
- More equitable distribution of income and broader capitalism
- Conversion of technology-enabled Savings for societal benefits

Disruptive Technologies with massive potential for SA
Opportunity: 3D-Printing for increased local value addition

<table>
<thead>
<tr>
<th>Localised 3D Printing</th>
<th>3D Printing Hubs</th>
<th>Industrial</th>
<th>Private</th>
<th>Food & Specialist</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Establishment of **Network of 3D Printing Hubs** for local production
- **Alternative** to export raw material and importing of finished goods
- Maximization of local value add and **job retention / creation**
- **Collective access / usage** of equipment and Printing “Files” for shared benefits
- Linkage to **Re-cycling** of existing Materials as additional element
Opportunity: Broad-based Energy Production & Value addition

Distributed Energy System

<table>
<thead>
<tr>
<th>Central & De-central Production</th>
<th>Distribution Network</th>
<th>Peer-to-Peer Market</th>
</tr>
</thead>
</table>

- **Fundamental re-think of responsibilities for Energy Production:**
 - **Utility** = Network maintenance, power gap closure and coordination
 - **Energy user and supplier** = generation and exchange/sale of power
 - Broad **community participation** in economy through power generation
- **Micro-loans** to fund Asset investments
- **Purchase guarantee** as key instrument
Opportunity: Industrial IoT Service Delivery & Waste reduction

- **IoT-based Public Service Delivery**
 - **Connection of all key “Things”**
 - **“Waste” & Utilization Detection**
 - **Integrated Service Delivery**

- **Application of Industrial IoT principles** for improved Service Delivery: Connect, Analyse, Act and Improve
- **Customisation of “Smart City” concept for SA realities and challenges**
- **Integration of different silo-driven elements through Network Technology and AI for bridging Service gaps**
- **Ploughing back** of operational savings for lower rates and more investments
Opportunity: Localised Agriculture and Resource Re-cycling

<table>
<thead>
<tr>
<th>Agriculture & Water protection</th>
<th>Food Value Chain</th>
<th>Sanitation Value Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of available urban space</td>
<td>Primary production</td>
<td></td>
</tr>
<tr>
<td>Pesticide-free and new energy farming</td>
<td>Processing → Transport → Food service</td>
<td></td>
</tr>
<tr>
<td>Water “re-cycling” and -harvesting</td>
<td>Market</td>
<td></td>
</tr>
<tr>
<td>Water Harvesting and at-Location Re-usage</td>
<td>Water Purification</td>
<td></td>
</tr>
<tr>
<td>Complex Compound Break-down</td>
<td>Advanced Materials Recycling</td>
<td></td>
</tr>
</tbody>
</table>

- **Reduction of logistics-intensive Farming** and optimal use of urban space
- **Creation of new supplier-buyer relationships** to support new business
- **Focus on grey-water** for load reduction on fresh water with incentives to save
- **Creation of market-place** for collection and “selling” of fresh water
- **Incentivization of Plastic Break-down**
- **Optimal integration** of all elements
Disruptive SA Industrial Development: Need for Game-Plan

4th Industrial Revolution / Technologies as Game Changer

Largely dictated by *Market forces*:
- Industry drives
- Regulations / Industrial Policy monitors, enables and restricts as needed

Strategic coordination and collaboration required by State and other stakeholders:
- Technologies evolve
- Active pursuit of opportunities
- Maturing of Technologies

Game-plan

- Process to follow
- Parties required
- Commercial Model
- Role of Strategy & Innovation Players
Disruptive SA Industrial Development: Concept Game-Plan

SA Opportunities

- Strategize and assess potential for new-age Ind. Development
- Establish and monitor multi-factor gap to realisation
- Research, test and industrialise solutions to close gaps
- Integrate solution and test in real-life environment
- Build governance model and implement

Emerging Technologies

- 3D Printing
- Advanced Materials Recycling
- Renewable Energy
- Blockchain
- Digital Platform
- Water Purification
- Urban Farming
- Mixed Reality Learning
- Drones
- Robotics
- New Age Commerce
- Artificial Intelligence

Technology Adoption

- "THE CHASM"
- “INNOVATORS "TECHIES"”
- “EARLY ADOPTERS "VISIONARIES"”
- “EARLY MAJORITY "PRAGMATISTS"”
- “LATE MAJORITY "CONSERVATIVES"”
- “LAGGARDS "SKEPTICS"”

Government
CSIR & Academia
Industry & NGOs
Strategy experts
Funders et al