Phase transformation cycle $\beta \rightarrow \alpha' + \alpha + \alpha'' \rightarrow \beta$ in Ti6Al4V alloy

Kalenda Mutombo1,2, Charles Siyasiya2, and Waldo Stumpf2

1 Council for Scientific and Industrial Research, CSIR Pretoria, South Africa
e-mail: KMutombo@csir.co.za

2 University of Pretoria, Materials Science & Engineering Pretoria, South Africa

Abstract

The β-phase transforms to α', α and α'' within a range of temperature from the β-transus (T_β) to about 600°C, considering no external stress is applied. Two types of microstructure were obtained: acicular martensite when rapidly cooled and lamellar α/β when slowly cooled from the β phase field. The sequential transformation of β into α', α-phase, α_2, and α'' was revealed as peaks on the coefficient thermal expansion (CTE) curves, however, reversed transformations: $\alpha'' \rightarrow \beta$, and $\alpha \rightarrow \beta$, were revealed by the DSC thermograms. The presence of β, α', α, α_2 and α'' was identified by means of XRD analysis and HRTEM.