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ABSTRACT 

This paper discusses various properties of Poly(lactide) upon nanocomposite formation 
with functionalized multiwalled carbon nanotubes (f-MWCNTs). The composite was prepared 
through melt extrusion technique. Functionalization of carbon nanotubes and possible interaction 
with PLA chains was investigated through attenuated total reflectance (ATR) Fourier 
transformed-infrared (FT-IR) and Raman spectroscopies. Scanning electron microscope (SEM) 
and polarized optical microscope (POM- in melt state) also revealed homogenous dispersion of 
f-MWCNTs in the PLA matrix with some agglomerates. Melting and crystallization phenomena 
of the nanocomposite studied through differential scanning calorimeter (DSC), wide angle X-ray 
scattering (WAXS), and POM show that f-MWCNTs facilitates nucleation and crystal growth of 
PLA matrix significantly. Thermogravimetric analyses (TGA) reveal that overall thermal 
stability of PLA matrix improves slightly upon the nanocomposite formation. Thermomechanical 
analyses also reveal a significant increase in modulus of the nanocomposite at room temperature, 
which drops suddenly across glass transition temperature. This is an indication of plasticization 
effect. 

INTRODUCTION 
Over the last two decades, the world has embarked on a massive research in the field of 

biodegradable and biocompatible polymers, both for medical and ecological applications.1 One 
such polymer is polylactide (PLA), for it is readily biodegradable and is made from agricultural 
sources2. PLA has potential medical applications such as tissue culture, surgical implants, 
restorable sutures, wound closure, and controlled-release systems.3-5 Polylactide is not only 
biocompatible but also bioresorbable. When implanted in living organisms including human 
body, it is hydrolyzed to its constituent α-hydroxy acid which is eliminated by general metabolic 
pathways6. However, for biomedical applications, neat PLA might not be suitable for high load 
bearing applications7, which intrigued the need to incorporate the reinforcements such as 
oriented PLA fibers. Nanocomposites represent an exceptional case of composites in which 
interfacial relationship between two phases is maximized. 

In recent years, a significant amount of work has been done on the preparation and 
characterization of polymer nanocomposites based on nanoclays such as montmorillinite, 
saponite, and synthetic mica.8-14 These fillers moderately improved the mechanical and physical 
properties of the neat polymer matrices even though their amounts were small (~5 wt.%). The 
main reason for these improved properties in the case of the clay-containing polymer 
nanocomposites is the presence of interfacial interactions as opposed to the conventional 
composites.  



 
 

Currently a number of researchers are focusing on the preparation and characterization of 
functionalized carbon nanotube containing polymer nanocomposites.15-27 This is because CNTs 
have superior mechanical properties such as extraordinary high strength, high modulus, excellent 
electrical conductivity along with their thermal conductivity and stability, and the low density 
associated with high aspect ratio compared to other nano-fillers.28,29 However, the effective 
utilization of CNTs has not being realized due to difficulties in producing CNT/polymer 
nanocomposites with homogeneously well-dispersed CNTs.30 Due to intrinsic van der Waals 
interactions,31 the as received CNTs tend to aggregate and entangle together spontaneously when 
blended directly with polymers. With poor dispersion, the active surface area for polymer/CNT 
surface interaction will not increase sufficiently and as a result very small amount of stress will 
be transferred between CNT filler and polymer matrix. It has been reported that chemical 
modification on the surface of CNTs improves their dispersion on polymer matrices.32-36 This 
chapter summarizes various properties of a PLA composite containing 0.5 wt.% of f-MWCNTs. 
The f-MWCNTs used in this work contain ~20% (determined gravimetrically) of 
hexadecylamine (HDA).  
 
EXPERIMENTAL 
Materials 

PLA (weight average molecular weight = 188k g.mol-1) with a D-lactide content of 1.1–
1.7% was obtained from Unitika Co. Ltd, Japan. Prior to use, PLA was dried at 80 °C for 2 days 
under vacuum. The CNTs (here multi-walled CNTs) used in this study were synthesized by 
chemical vapour deposition (inner diameter ~10 nm; outer diameter ~ 20 nm; average length 
~500 µm, measured by transmission electron microscopy) and 95% pure (measured by energy 
dispersive X-ray spectroscopy). Hexadecylamine (HDA), chloroform, and ethanol were 
purchased from Sigma-Aldrich and used as received. 

In a typical functionalization process, a mixture of 1g CNTs and 5g HDA was taken in a 
conical flask and heated at 180°C for 6 h in an oil bath. After cooling to room temperature, the 
excess of HDA was removed from the reaction mixture by washing with ethanol several times. 
The black solid was then collected by Nylon membrane filtration (0.45 µm pore size) and dried 
at 110°C overnight to get a constant weight. The increased weight of the CNTs was ~20%, 
determined gravimetrically. This results imply that the amount of HDA surfactant content is ~20 
wt.-% 
Preparation of Nanocomposites 

For the preparation of PLA/MWCNT nanocomposite, f-MWCNTs (0.5 wt.-%, powder 
form) and PLA (pellet form) were first dry mixed in a polyethylene bottle. The mixture was then 
extruded using co-rotating twin-screw mini-extruder (bench-top Haake Minilab II, Thermo 
Scientific) operated at 180°C (screw speed = 30 rpm, time = 5 min) to yield black nanocomposite 
strands. These strands were chopped into pieces and stacked between two metal plates and 
compression molded by pressing with 2 MPa pressure at 180 oC for 2 min. Neat PLA and 
nanocomposite samples were annealed at 110 °C under vacuum prior to all characterizations and 
property measurements.  
Characterization and property measurement 

The functionalization and the presence of f-MWCNTs was confirmed through the 
attenuated total reflectance (ATR) Fourier-transform infrared (FT-IR) using Perkin Elmer 
Spectrum 100 instrument at a resolution of 4.0 cm-1. Raman spectroscopy studies were employed 
using a lab Raman system, Jobin-Yvon Horiba T64000 Spectroscopy, equipped with an Olympus 



 
 

BX-40 microscope. The excitation wavelength was 514.5 nm with an energy setting of 1.2 mW 
from a Coherent Innova model 308 argon ion laser. The morphology of the freeze fractured 
surface of the composite was analyzed using Carl Zeiss SMT Neon 40, Cross Beam Series FIB-
SEM in SEM mode, with an acceleration voltage of 2 kV. The spherulitic growth behaviour and 
the degree of dispersing in molten state of neat PLA and its composite were studied with a Carl 
Zeiss Imager Z1M polarized optical microscope (POM). Samples were heated to 190°C at a 
heating rate of 20°C.min-1, held at that temperature for 5 min, and then the pictures were taken. 

The melting and glass transition temperatures as well as crystallinity of the PLA matrix 
before and after nanocomposite formation were studied with a DSC instrument (model: TA 
Q2000) under constant nitrogen flow of 50 mL.min-1 and a heating rate of 20 oC.min-1. WAXS 
experiments of the PLA and nanocomposite samples were carried out in an Anton Paar SAXS 
instrument operated at 40 kV and 50 mA with line collimation geometry. The radiation used was 
a Ni filtered CuKα radiation of wavelength 0.154 nm (PAN Analytical X-ray source). 
Thermogravimetric analyses of both PLA and the nanocomposite samples were carried out on a 
TGA Q500 (TA Instruments) at a heating rate of 10 ºC.min-1 under thermo-oxidative conditions, 
from ambient temperature to 650 ºC. The dynamic mechanical properties of neat PLA and its 
composite samples were determined using an Anton Paar-Physica MCR501 Rheometer in the 
tension-torsion mode. The temperature dependence of the storage modulus (G΄) and tan δ of neat 
PLA and composite samples, were measured at a constant frequency (ν) of 6.28 rad.s-1 with the 
strain amplitude of 0.02% (selected after a series of strain sweep tests at different temperatures to 
determine the linear region) and in the temperature range of -20 to 160 ºC at a heating rate of 2 
ºC.min-1. 

RESULTS AND DISCUSSION 

Attenuated total reflectance fourier-transform infrared (ATR-FTIR) spectroscopy 
Figure 1 shows the ATR-FTIR spectra of neat PLA, the f-MWCNTs and the PLA/f-

MWCNTs composite. The spectrum of the composite shows the characteristic peaks of PLA and 
the f-MWCNTs. The broad peak in the spectrum of the f-MWCNTs represents the N-H 
stretching of HDA. This broad peak also appears in the spectrum of the composite. The peak at 
1592 cm-1

 (indicated by *) in the spectrum of the f-MWCNTs represents the primary amine N-H 
deformation of HDA.  This peak is also observed in the spectrum of the composite at 1645 cm-1 
(also indicated by *). These results confirm the presence of f-MWCNTs in the composite. 
However, it is difficult to establish whether there is a possible interfacial interaction between the 
PLA and the HDA chains, because we could not get a clear peak of the N-H stretching in both 
the f-MWCNTs and the composite spectra. 

Raman spectroscopy 
Raman spectroscopy was used to verify the presence of possible interfacial interactions 

between f-MWCNTs and the matrix of PLA. Figure 2 shows the Raman spectra of the f-
MWCNTs and the corresponding nanocomposite of PLA. It can be seen from the spectra that 
there is a small shift in the characteristic D-band and a quite significant shift in the G-band of the 
f-MWCNTs to higher wavenumbers in the case of the nanocomposite. This indicates the 
presence of interfacial interactions between the PLA chains and the f-MWCNTs surfaces. It can 
also be seen that the characteristic peak of the PLA matrix (appearing at 1450 cm-1 for neat PLA, 



 

26) moves toward higher a wavenumber of 1453 cm-1. This observation further confirms the 
presence of some interactions between the PLA matrix and the f-MWCNT surfaces. 

 

 
Figure 1. FT-IR spectra of pure PLA, f-MWCNTs, and the nanocomposite.  

 

 
Figure 2. Raman spectra of PLA and its nanocomposite. 

Scanning electron microscopy 
The dispersion of the f-MWCNTs in the PLA matrix was studied using a scanning 

electron microscope (SEM) operated at an accelerated voltage of 2 kV. figure 3 (a) represents the 
SEM image of the freeze fractured surface of the PLA/f-MWCNT nanocomposite. The polymer 
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The effect of cooling rate on the non-isothermal crystallization behaviour of PLA 
To study the influence of cooling rates on the non-isothermal crystallization behaviour of 

PLA, the samples were heated to 190 °C at a heating rate of 20 °C.min-1, kept at this temperature 
for 5 min, and then cooled down to -20 ºC at different cooling rates. The cooling curves of pure 
PLA and its composite during non-isothermal crystallization from their melts at five different 
cooling rates are shown in figure 5. In the case of neat PLA, a broad peak is observed when the 
sample was cooled from the melt at a rate of 0.5 ºC.min-1. With an increase in cooling rate to 1 
°C.min-1, a peak with a shoulder peak appears and shifts towards lower temperatures. The peak 
shoulders indicate a continuous change of enthalpy. It is clear that at cooling rates higher than 5 
ºC.min-1, it is very difficult for the PLA matrix to fully crystallize and the polymer stays in a 
super-cooled state. The crystallization peak shifts to lower temperatures as the cooling rate is 
increased is a natural observation, because it is difficult for the polymer chains to crystallize at 
faster cooling rates. A small crystallization peak appears at 126 ºC for the composite when the 
cooling rate from the melt is 0.5 ºC.min-1. It is further observed that this peak does not clearly 
show the double thermal event that was observed in the case of the neat PLA. This peak also 
shifts to lower temperatures as the cooling rate increases to 1 ºC.min-1. A further increase in the 
cooling rates to 5 ºC.min-1 also shows the presence of a double peak as in the case of PLA. The 
crystallization peaks for the nanocomposite, for all the investigated cooling rates, are more 
intense and better resolved than those for neat PLA. What is more interesting is that even at a 
faster cooling rate of 10 ºC.min-1, the nanocomposite is still able to crystallize. Based on the 
observations above, it can be concluded that f-MWCNTs act as nucleating agents for the 
crystallization of the PLA matrix. 

To confirm the nucleating effect of the f-MWCNTs during non-isothermal crystallization, 
the samples were investigated through POM. For the POM measurements, a cooling rate of 10 
ºC.min-1 was selected because during injection moulding the cooling rates are usually very fast. 
The POM images of the PLA and its nanocomposite, taken at 130 ºC during isothermal 
crystallization from their melt, are shown in figure 6.  The images show large spherulites for the 
neat PLA sample, but much smaller and more densely packed crystallites for the nanocomposite. 
This observation indicates that the f-MWCNT nanoparticles formed nucleating sites for the 
formation of small spherulites in the nanocomposite.  
 
Effect of cooling rates on melting behaviour of PLA 

In order to study the effect of cooling rates on the melting behaviour, PLA and its 
nanocomposite were heated from -20 to 190 °C at 20 °C.min-1 as soon as the cooling was 
finished. These heating curves are presented in figure 7, and the DSC data are summarized in 
Table 1. It can be seen that PLA only shows cold crystallization peaks and two melting peaks 
when the cooling rates were 5 and 10 ºC min-1. The composite also shows cold crystallization 
peaks at the same cooling rates, but single melting peaks. This observation indicates that the 
crystallization of PLA chains was not completed during cooling at the faster cooling rates, and 
the crystallization process continued during heating. The double melting peaks indicate the 
presence of different types of crystals with different stabilities. Nam et al.27 also suggested that 
the double melting peaks of PLA may be due to the presence of less perfect crystals having 
enough time to melt and rearrange into crystals with higher structural perfection, which re-
melted at higher temperatures during heating in the DSC. However, when the cooling rates were 
0.5, 1, and 2 ºC.min-1, no cold crystallization peak was observed for both PLA and its 
nanocomposite. This indicates that the crystallization of PLA chains was completed at slower 



 
 

cooling rates during the non-isothermal cooling process. Single melting peaks were observed 
when the cooling rate was 0.5 °C.min-1 for both samples. In brief, the nanocomposite shows two 
distinct melting peaks when the cooling rate was 2 °C.min-1 in comparison to the neat polymer. 
This is an indication that the nucleation effect of f-MWCNTs in the polymer matrix assisted in 
the formation of more perfect crystals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

By integrating the area under the endothermic region of the DSC curves, and by 
subtracting the extra heat absorbed by the crystallites formed during cold crystallization, the 
melting enthalpy (∆Hm) of all the samples was calculated, and at the same time the degree of 
crystallinity (χc) was estimated by considering the melting enthalpy of 100% crystalline PLA as 
93 J.g-1.21 The χc data in Table 1 show that the overall crystallinity of PLA was reduced when 0.5 
wt.% f-MWCNTs was added. A decrease in overall crystallinity may be as a result of two 
factors: MWCNT agglomerates acting as active nucleation sites and at the same time, the non-
agglomerated sites inhibiting mobility of the polymer chains. Because of the well-dispersed f-
MWCNTs crystal growth was inhibited, thus leading to a decrease of crystallinity. 

Figure 5. DSC heating curve of PLA 
and its nanocomposite after non-
isothermal crystallization at different 
cooling rates.  

Figure 6. Polarized optical 
micrographs of (a) neat PLA and (b) 
the PLA/f-MWCNT nanocomposite. 
Both samples were crystallized at 
130 oC from their melts.
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Table 1 Cooling rate dependence of the melting enthalpy from two melting peaks of the PLA 
and the composite  

Sample     Cooling rate Melting enthalpy / J g-1 a     % crystallinityb 
PLA      0.5 53.0 57.0 
 1 44.4 47.8 
 2 41.1 44.2 
 5 37.6 40.4 
 10 37.6 40.4 
Nanocomposite 0.5 48.0 51.6 
 1 40.1 43.1 
 2 39.1 42.0 
 5 38.8 41.7 
 10 33.9 36.5 

 
a The total melting enthalpy of PLA evaluated by integration of the area under the endothermic 
peaks from the heating scans after non-isothermal crystallization. 
b Calculated using the melting enthalpy of 100% crystalline PLA, 93 J g-1.37 

 
Figure 7. DSC heating curves of PLA and the nanocomposite after non-isothermal crystallization 
at five different cooling rates. 
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Temperature modulated DSC  
To separate the heat capacity and kinetically related components during cold 

crystallization and subsequent melting of neat PLA and its nanocomposite, TMDSC of melt 
quenched samples were done. TMDSC allows us to see whether any re-crystallization process 
occurs as soon as PLA begins to melt. This has been used to confirm the presence of melting, re-
crystallization, and re-melting processes. Figure 8 illustrates the TMDSC curves of (a) neat PLA 
and (b) its nanocomposite during the second heating. The samples were first equilibrated at -20 
oC for 30 min, and then heated to 190 ºC at a rate of 2 ºC.min-1, kept at that temperature for 5 
min. to destroy any previous thermal history, and cooled to -20 oC at a rate of 2 ºC.min-1. 
TMDSC was started as soon as the cooling was finished. For both samples the total heat flow 
(middle curve) is separated into well defined reversible heat flow (bottom curve) and non-
reversible heat flow (top curve). For neat PLA, the following behaviour is observed: two melting 
signals on the reversible heat flow curve are accompanied by the subsequent re-crystallization on 
the non-reversible heat flow curve, with the total heat flow curve showing only the melting 
peaks. This observation may be due to the partial melting and perfection of different crystals at 
temperatures before their final melting. For the nanocomposite, two melting peaks are observed 
for all the heat flow curves with no apparent re-crystallization. What is more notable is that the 
two melting peaks of the nanocomposite on the reversible heat flow curve are now distinct in 
comparison with the peaks for the neat polymer. This indicates the presence of different forms of 
crystals with different thermal stabilities. Another interesting feature is that TMDSC enabled us 
to see partial re-crystallization occurring in the neat polymer, which is absent in the composite.  

To estimate the percent crystallinity (χc) of the samples, we took the enthalpy of melting 
(∆Hf) from the reversible heat flow curve, divided this value by the enthalpy of a 100% 
crystalline polymer (∆Hf for 100 % crystalline PLA is 93 J.g-1 21), and multiplied the answer by 
100%. The data is reported in table 2. These values indicate that the crystallinity of the PLA 
matrix decreased in the presence of the f-MWCNTs.  
 
Table 2 TMDSC data for PLA and its nanocomposite. 
Sample Total Reversible Non-reversible χc 

%     Tm1     Tm2     ∆Hf 
ºC        ºC        J.g-1 

Tg      Tm1    Tm2    ∆Hf 
ºC     ºC       ºC        J.g-1 

∆Hc   ∆Hf     Tm 
 J.g-1   J.g-1    ºC 

PLA 169.9    -         43.54 62.2  164.2  169.8  30.1 8.9  26.7  169.9 19.1 
Composite 165.3  171.2   44.94 62.0  165.3  171.2  26.9 1.7  24.3   171.0 24.3 
 
 



 
 

 
 
Figure 8. TMDSC curves of (a) PLA and (b) the nanocomposite during second heating. 

Wide angle X-ray scattering 
To study the presence of different PLA crystals and their modification, WAXS of the 

neat PLA and nanocomposite samples were performed. The measurements were taken from 
room temperature to the melting temperature, and then back to room temperature. The samples 
were kept at each temperature for 5 minutes, including 1 minute exposure to the X-rays. Figure 9 
shows the one-dimensional WAXS patterns of PLA and the nanocomposite obtained under these 
conditions. Overall, there is no sign of the modification of existing crystals or the formation of 
new crystals. The notable observation is when both samples were cooled from their melts. It is 
clear that it is very difficult for PLA to crystallize during cooling. However, crystals are formed 
in the presence of f-MWCNTs as shown by the fully resolved peaks in the spectra of the 
nanocomposite. Again, this supports the nucleation effect of f-MWCNTs in the polymer matrix. 
However, a very small peak is observed on the spectra of both samples at around 2Ө = 22.5˚. 
This observation suggests the growth of another type of crystal. 
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Figure 9. Temperature dependence wide-angle X-ray scattering patterns of (a) neat PLA and (b) 
the nanocomposite samples during both heating and cooling cycles. 

Thermogravimetric analysis 
This section discusses the thermal stabilities of neat PLA and the nanocomposite in a 

thermo-oxidative environment. The TGA and the first dTGA curves of neat PLA and the 
nanocomposite obtained under oxygen flow are presented in figure 10. The dTGA are presented 
because they more clearly show the difference in thermal stabilities between the samples. Both 
samples show a one-step decomposition. The thermal stability of the nanocomposite is higher 
than that of the neat PLA. This improvement can be attributed to the fairly homogenous 
dispersion of the f-MWCNTs. The thermal stability of the nanocomposite may also be due to the 
higher thermal stability of the CNTs in comparison to that of PLA. The dTGA peak of the 
nanocomposite shifts to a higher temperature compared to that of the neat PLA sample. This is 
also an indication of the improvement in thermal stability of PLA in the presence of the f-
MWCNTs.  
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Figure 10. TGA and derivative TGA curves of PLA and the nanocomposite under oxygen flow at 
a heating rate of 10 ºC min-1.  

Dynamic mechanical analysis 
DMA generally reveals the amount of energy stored in the nanocomposite as elastic 

energy, and the amount of energy dissipated during mechanical strain, which strongly depends 
on the geometrical characteristics and the level of dispersion of the filler in the matrix. It also 
depends on the degree of interaction between the matrix and the filler.38 Figure 11 (a and b) 
represents the storage modulus (G’) and the damping factor (tan δ) curves for PLA and the 
nanocomposite, respectively. The damping factor provides information on the relative 
contributions of the viscous and elastic components of the viscoelastic material. Figure 11a 
shows three phenomena: (1) from 0-50 ºC, there is an increase in modulus. This is because both 
samples are stiff because there is not yet chain mobility, but the nanocomposite is stiffer due to 
the presence stiff f-MWCNTs; (2) from 50-80 ºC, there is a sudden drop of modulus because the 
chains of the surfactant (HDA) exhibits a plasticizing effect on the polymer matrix just below 
and above the glass transition temperature; (3) from 80-160 ºC, there is a slight improvement of 
modulus because the presence of fairly homogenously dispersed f-MWCNTs inhibits the PLA 
chain mobility. Figure 11b clearly indicates that there is a decrease in the glass transition 
temperature from 74 to 71 ºC. This supports the observation of a plasticizing effect of the HDA 
chains in the PLA matrix. From these observations it may be concluded that the fairly 
homogenously dispersed f-MWCNTs in the PLA matrix improved the storage modulus below 
and above the glass transition temperature. Also, the f-MWCNTs acted as a plasticizer of the 
PLA matrix at around the glass transition temperature. 
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Figure 11. Temperature dependence of dynamic mechanical properties of neat PLA and its 
nanocomposite: (a) storage modulus and (b) damping factor. 

CONCLUSIONS 
This paper discussed the morphology, thermal, and thermomechanical properties of a 

PLA nanocomposite containing 0.5 wt.% of f-MWCNTs (with an amine content of ~20 %). The 
SEM and POM (of the samples in the molten state) results confirm the homogenous dispersion 
of f-MWCNTs in the PLA matrix, with some micro-agglomeration. The POM results also show 
the formation of much smaller PLA crystallites in the presence of f-MWCNTs. The f-MWCNTs 
were found to play a nucleation role in the crystallization of PLA, as observed from the DSC, 
SEM, and WAXS results. The DMA and TGA results show that the presence of f-MWCNTs had 
only a slight influence on the thermomechanical properties and thermal stability of the PLA. 
FTIR and Raman spectroscopy confirmed the functionalization of the MWCNTs, and the 
presence of facial interaction between f-MWCNTs and the PLA matrix.  
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