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by extension, the impact of continued anthropogenic perturbation of atmospheric CO2. There
is little agreement, however, in climate model projections of the sensitivity of the Southern
Ocean BCP to climate change, with a lack of consensus in even the direction of predicted
change, highlighting a gap in our understanding of a major planetary carbon flux. In this
review, we summarize relevant research that highlights the important role of fine-scale
dynamics (both temporal and spatial) that link physical forcing mechanisms to biogeochemical
responses that impact the characteristics of the seasonal cycle of phytoplankton and by
extension the BCP. This approach highlights the potential for integrating autonomous
and remote sensing observations of fine scale dynamics to derive regionally optimized
biogeochemical parameterizations for Southern Ocean models. Ongoing development in
both the observational and modelling fields will generate new insights into Southern Ocean
ecosystem function for improved predictions of the sensitivity of the Southern Ocean BCP to
climate change.

This article is part of a discussion meeting issue ’Heat and carbon uptake in the Southern
Ocean: the state of the art and future priorities’.

1. Background and rationale
The inertia of a flywheel opposes and moderates fluctuations and stores excess energy. As such,
the Southern Ocean can be considered the climate flywheel of the planet, buffering the impacts
of climate change by accounting for 50% of the total oceanic uptake of anthropogenic CO2
[1,2] and 75% of the excess heat generated by anthropogenic CO2 [3]. The air-sea exchange of
CO2 in the Southern Ocean is balanced by an interplay of physical and biological processes
that vary on a seasonal cycle. Typically, the Southern Ocean is characterized by a dominance
of CO2 outgassing in winter driven by upwelling and mixed layer entrainment of carbon-
rich deep water (e.g. [4,5]), whereas in summer, when phytoplankton primary production and
carbon export to the deep ocean are at their peak, the biological carbon pump (BCP) dominates
CO2 uptake [6]. Indeed, the Southern Ocean BCP, which includes the physical processes that
transport organic material from surface waters to depth, i.e. sinking and subduction, is considered
a major contributor to the sink of natural CO2 removing an estimated 3 Pg of carbon from
surface waters south of 30° S each year (i.e. 33% of the global organic carbon flux) [7]. Annually
averaged, the global BCP offsets the flux of upwelled pre-industrial dissolved inorganic carbon
(DIC) [8,9]. If the contribution that the Southern Ocean BCP makes to offsetting the upwelling
of DIC is modified by climate change, it would conceivably begin to play an important role
in the net uptake of anthropogenic CO2 and hence directly impact global climate [10–13]. In
addition, although the magnitude of the feedback is under debate (e.g. [6]), it is widely agreed
that the Southern Ocean BCP plays an important role in regulating the supply of nutrients
to thermocline waters (Subantarctic Mode Water and Intermediate Water) of the Southern
Hemisphere and North Atlantic [14,15], which in turn drives low latitude productivity and
associated carbon export [16]. As such, any reduction in the efficiency of the Southern Ocean
BCP has the potential to be one of the most important positive feedbacks on global climate
change [17].

It is anticipated that anthropogenic forcing will increasingly influence oceanic nutrient
cycling [18] impacting primary production, ecosystem function and the transfer of carbon,
energy and nutrients through pelagic and benthic food webs with complex feedbacks on
ocean biogeochemistry and climate [19,20]. The Southern Ocean is considered to be particularly
sensitive to climate change [21] with widespread physico-chemical changes already being
observed in regional warming [22], freshening linked to changes in sea ice extent [23], increased
vertical stratification and altered mixed layer depths (MLDs) in response to stronger winds [24]
associated with a more positive phase of the Southern Annular Mode [25]. Understanding how
the strength and efficiency of the BCP is expected to respond to these predicted changes is
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necessary for accurately predicting long-term trends in the global carbon cycle and by extension
global climate [13,26–28]. Nevertheless, the processes and dynamics that define the direction, the
magnitude and the rates of change of the Southern Ocean BCP (i.e. the climate sensitivity) are
not well understood [12,27,28]. There is little consensus in even the direction of predicted change
in the Southern Ocean BCP (from coupled model intercomparison project phase 6 predictions),
highlighting gaps in our knowledge of a major planetary carbon flux [27].

The seasonal cycle provides a contemporary observable lens to investigate the links between
seasonal changes in buoyancy and momentum forcing of mixed layer physics and ecosystem
response in terms of production and associated carbon export [29–33]. Accordingly, it is thought
that the variability and long-term trends in mean annual Southern Ocean productivity may be
mediated through changes in the characteristics of its seasonal cycle [29,34]. The coupling of these
physical and biogeochemical processes at seasonal scales may also be used as part of emergent
constraints analyses to reduce uncertainty in long-term projections of ocean productivity and CO2
flux [35].

Two decades ago, a review by Boyd [36] used key observational and experimental data sources
to provide a seasonal framework for understanding the complex temporal and spatial patterns of
environmental factors that control the distribution of phytoplankton stocks, species composition
and their physiological status in the Southern Ocean. A key outcome (based on the work of Boyd
et al. [37]; Franck et al. [38]; Nelson et al. [39]; Tortell et al. [40] and others) was a schematic that
summarized the seasonal progression of environmental controls of phytoplankton that included
irradiance, iron, silicic acid and others (yet to be confirmed), recognizing that this framework
would vary regionally and depend on the dominant taxa (electronic supplementary material,
figure S1).

It was also at this time (1990s to early 2000s) that the role of finer scale processes was becoming
apparent in dictating phytoplankton standing stocks through vertical nutrient injection, with
a comprehensive review provided by Klein & Lapeyre [41]. In essence, nutrient requirements
(from new production estimates) surpassed wintertime convective supply from entertainment
[42,43]. Mesoscale eddies were proposed (by Jenkins [44] and later by McGillicuddy et al. [42,43])
as the mechanism to resolve the nutrient budget, driving injection that accounts for as much as
20–30% of annual requirements. However, a shortfall still remained. Submesoscale physics, i.e.
enhanced vertical velocity associated with strong density and vorticity gradients (at spatial scales
of 1–10 km) between and around mesoscale eddies (i.e. fronts, meanders and filaments [45]) were
proposed as the additional mechanism needed to close the nutrient budget by driving significant
injection from the ocean’s interior to the mixed layer [46–48]. Meso and submesoscale processes
were also shown to be important for increasing light exposure through enhanced stratification
initiating patchy blooms earlier in the season [49].

Fine scales of variability are defined here as processes occurring at spatial scales from
the submesoscale (0.1–10 km) to the mesoscale (10–200 km) and at temporal scales of days to
months (intra-seasonal to seasonal) [50]. These fine scales of variability were highlighted in
an observational study by Thomalla et al. [29] that used the characteristics of the seasonal
cycle of chlorophyll-a (bloom initiation, amplitude and variability) to regionally classify the
Southern Ocean. This approach provided a dynamic understanding of the spatial heterogeneity
of phytoplankton that emphasized the spatial-temporal prevalence of fine-scale (subseasonal)
variability in dictating the characteristics of the seasonal cycle. In particular, the degree of seasonal
cycle reproducibility (SCR) (as the % variance explained by the climatological seasonal cycle)
provided a useful metric with the ability to capture sub-seasonal scales of variability (figure 1a).
In regions with high SCR (e.g. in the subtropics), the chlorophyll-a time series was hypothesized
to be phase locked to the climatological drivers of seasonal adjustments in light, buoyancy flux
and MLD, whereas regions with low SCR (e.g. frontal and marginal ice zones) were proposed
as being strongly impacted by intra-seasonal forcing of light and nutrients through smaller
scale (spatial and temporal) adjustments in the MLD associated with storms and meso- and
submesoscale eddies. A key outcome of this work was a synthesis schematic (figure 1c) that
divided the Southern Ocean into a mosaic of four regions that summarized the varying response
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Figure 1. Maps of mean (1999–2009) (a) seasonal cycle reproducibility (SCR; %) calculated as defined in Thomalla et al. [29],
(b) chlorophyll-a (mg m−3) and (c) a schematic summarizing the response of phytoplankton biomass to the underlying physics
of the different seasonal regimes for 1999–2009 as per Thomalla et al. [29]. Regions in blue represent regions of low (less than
0.25 mg m−3) chlorophyll-a concentrationwith either high seasonal cycle reproducibility (greater than 40%) (light blue) or low
seasonal cycle reproducibility (less than40%) (darkblue). Regions ingreen represent regionsofhigh chlorophyll-a concentration
(greater than 0.25 mg m−3) with either low seasonal cycle reproducibility (light green) or high seasonal cycle reproducibility
(dark green). Ocean colour data taken from the ocean colour climate change initiative [51].

of phytoplankton biomass (high versus low) to different seasonal regimes (high SCR versus low
SCR). Of note were regions of high seasonally integrated biomass (figure 1b) coincident with low
SCR (figure 1a) depicted in light green in figure 1c), that were hypothesized to be a consequence
of high intra-seasonal physical forcing of the mixed layer (from high wind stress and upper water
column stabilization through positive buoyancy forcing associated with mesoscale dynamics) at
appropriate time scales to support enhanced phytoplankton growth [29].

The importance of intraseasonal variability in characterizing the seasonal bloom, in particular
in the context of wind interactions with meso- and submesoscale physics, was highlighted by
a number of other studies during this period. These include high resolution satellite imagery
[47] and model simulations [48], which show that an incorrect representation of submesoscale
frontogenesis could result in errors in primary production estimates of up to 50% by ignoring
transient nutrient inputs from intense submesoscale turbulence forced by high frequency winds
[48]. A synthesis of satellite chlorophyll-a, ocean reanalyses and modelling [52] explored the
spatial variability in the nature of the chlorophyll-a response to mixing events based on the
degree of iron limitation (relative to light) and concluded that the balance between the degree of
light and iron limitation dictated the phytoplankton response to transient mixing. Net community
production (NCP) measurements (from �O2/Argon ratios) and MLD in the Atlantic Subantarctic
Zone (SAZ) [53] implied that NCP variability was driven by alternating states of synoptic scale
deepening of the mixed layer that entrained dissolved iron, followed by restratification, allowing
rapid growth and high NCP in an iron replete, high light environment. These findings were
corroborated by a high-resolution satellite study by Carranza & Gille [54], which confirmed
that high winds correlate with high chlorophyll-a over much of the Southern Ocean similarly
suggesting that transient MLD deepening (i.e. wind-driven entrainment) helps sustain high
chlorophyll-a through much of the Southern Ocean in summer.

Together, these studies (and others around the time) stress the importance of coupling ocean
physics to biogeochemistry at high-resolution scales in both time (seasonal to intraseasonal) and
space (meso- to submesoscale) in order to resolve the environmental drivers that determine
the characteristics of the seasonal cycle. This nuanced understanding expands on the original
seasonal framework of Boyd [36] and highlights the necessity for innovative fine-scale
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observations (e.g. ocean robotics and satellite remote sensing) that can sample at a frequency
appropriate to capture the dominant scales of variability in the physics and the growth timescales
of phytoplankton. These observations can be combined with modelling techniques (mechanistic
and empirical) to fill gaps in our knowledge at temporal and spatial scales hitherto undersampled
and poorly understood in the Southern Ocean.

2. Accessing the fine-scale through autonomous platforms, remote sensing
and modelling

(a) Insights from the Southern Ocean carbon and climate observatory
The requirement for fine-scale observations has stimulated the development of integrated
modelling and observational approaches, e.g. the Southern Ocean Seasonal Cycle EXperiments:
SOSCEx led by the South African Southern Ocean carbon-climate observatory (SOCCO). These
experiments merge innovative in situ robotics and remote sensing observational capabilities
with advanced ship-based experimental infrastructure and high-resolution modelling to observe
seasonality through a high-resolution lens. We provide here a synthesis of understanding gained
from SOCCO glider deployments in the Atlantic SAZ ([30], figure 2a–f ), a region of high
chlorophyll-a and low SCR (light green region in figure 1c), as a case study on how high-resolution
observations generated by autonomous underwater vehicles (3 h, 2 km resolution) can be used to
address fine-scale physical-biogeochemical interactions.

Although glider observations opened new avenues to sample time and space scales to
illuminate our view of the characteristics of the seasonal cycle, a better understanding of their
limitations was also required, specifically about how best to interpret the nature of the quasi-
Lagrangian time series that is capturing both temporal and spatial scales of variability intrinsic
to our interpretation of growth and spatial distribution. A spatio-temporal investigation [55]
revealed that chlorophyll-a variability captured by a glider was generally larger than the spatial
variability observed in co-located remote sensing images. As such, the variability observed by
gliders was considered to be mostly due to sub-daily phytoplankton adjustments in time rather
than glider trajectories sampling fine-scale features in space [55].

Contrasting physical-biogeochemical interactions led to a separation of the time series into
spring and summer [30] identified as the date when mean stratification above the winter
mixed layer persistently increased due to positive net heat flux, while in spring, stratification
was comparatively weak and MLDs typically deep (greater than 200 m). That said, meso- to
submesoscale eddies and fronts in spring coincided with intermittent (1–2 days) increases in
vertical stratification and a rapid shoaling of the mixed layer (greater than 160 m day−1). These
restratification events occurred 1–2 months prior to the heat flux becoming net positive and
strongly affected the spatially and temporally heterogeneous blooms observed in spring, where
the dominant signals of variability were less than 10 days [55]. Here, enhanced light availability
through reduced mixing [56–58] contributes to intermittent increased rates of NCP [31]. The
role of eddies in driving the rapid variability of mixed layer stratification was confirmed in
a study by du Plessis et al. [59], who compared the mean stratification of the mixed layer
from the glider time series to a one-dimensional numerical simulation forced with wind stress
and heat flux for the respective time and position of the glider. Their comparison showed
large excursions between observed and modelled stratification during periods where enhanced
horizontal buoyancy gradients were observed in the glider time series, which suggests the
presence of three-dimensional mechanisms not resolved in the model that plays an important
role in explaining enhanced springtime stratification. In a follow up study using four consecutive
years of spring-to-summer glider deployments, [60] showed that during periods of strong
down-front winds (aligned in the direction of a front), enhanced mixing [61] delayed the onset
date of seasonal mixed layer restratification by multiple weeks after the heat flux turned net
positive. This restratification date has important implications for the mean light exposure to
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Figure 2. Sections for the SG573 glider time series from25 September 2012 to 15 February 2013 of (a) chlorophyll-a concentration
(mg m−3), (b) temperature (°C) and (c) Brunt–VÈĄisÈĄlÈĄ frequency (N2; s−2) used as an index for stratification. The MLD,
where�T10m= 0.2°C, is overlaid inwhite. Time series of (d)modelled net primary production (NPP;mg C m−2 d−1) integrated
over the MLD (PPmld) and the water column (PPwc), (e) mean modelled respiration (R; mg C m−2 d−1) ± standard mean
error and (f) mean net community production (NCP; mg C m−2 d−1) ± s.e. Adapted from Swart et al. [30] and Thomalla
et al. [31].

phytoplankton, with rapid mixed layer eddy-driven restratification favouring productivity and
allowing relatively short (1–7 days) blooms to develop earlier on in the season [30,49]. An
important contribution of this work is that it provides observational evidence of the rapid
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response of phytoplankton to relatively short (2–3 days) changes in the stratification induced
by meso- to submesoscale processes during the spring-to-summer transition period.

A more spatially homogeneous bloom is observed in summer [30], where the dominant
scale of variability in surface chlorophyll-a was monthly, but a second significant mode of
variability occurred at approximately 10-day scales comparable to the physical variables of sea
surface temperature and MLD [55]. Enhanced stratification from extensive warming limited the
deepening of the MLD, which remained highly variable at intraseasonal time scales, fluctuating
around a threshold of approximately 40 m. These MLD variations appeared to be driven by
fluctuations in the wind stress from synoptic storms that undergo a rapid recovery to shallow,
high light environments through feature driven buoyancy stratification [30]. Swart et al. [30]
proposed that the observed variability of the mixed layer regulated both light and iron to the
upper ocean at appropriate time scales for phytoplankton growth, thereby sustaining the bloom
for an extended period through to late summer. These findings were corroborated by rates of
NCP that were highly variable but generally positive throughout January and February (figure 2f )
implying a sufficient iron source to support net autotrophy well into summer [62]. Highly variable
rates of NCP were at similar time scales as the wind events that drive the MLD deepening [30,55],
coinciding with peaks in respiration when exceeding the critical depth ([31]; figure 2e,f ). These
results support the likelihood of event scale regulation of iron and light at appropriate intervals
to support sustained net autotrophy well into summer [30,53,54].

Despite the compelling evidence that these studies provide in support of the role of sub-
seasonal adjustments in light and iron for enhanced growth, they do not explicitly investigate
seasonal variability in iron availability. With the use of passive chlorophyll-a fluorescence on
gliders, a study by Ryan-Keogh and Thomalla [63] used the degree of non-photochemical
quenching (NPQ) (a decrease in measured fluorescence from the dissipation of excess energy
as heat under high light conditions [64]) to derive a photophysiological indicator of iron stress.
Specifically, the irradiance-normalized slope of NPQ (αNPQ) acts as a proxy for iron limitation,
with higher values associated with greater iron stress (electronic supplementary material, figure
S2a). This proxy allows the system to be addressed at the full range of scales appropriate to
the dynamics of nutrient supply and demand. The time series showed a seasonal increase in
αNPQ in spring, consistent with a shoaling of the MLD and an anticipated increase in iron
limitation following biological utilization (electronic supplementary material, figure S2a). In
summer, there was a 24% increase in αNPQ variability, considered to be primarily driven by MLD.
Although a direct correlation was poor (r2 = 0.22), this was not unexpected given the variable
response of phytoplankton to changes in the MLD [52,54]. Similar weak linear correlations were
observed between physical variables and chlorophyll-a in Swart et al. [30] and Little et al. [55],
however, when performing a series of correlations using rolling means (2–12 days), the correlation
coefficients increased to 0.64 at an approximately 10-day window (electronic supplementary
material, figure S2b). Since the dominant scales of variability of summer αNPQ are coincident
with the physical drivers of MLD variability, event-scale entrainment of iron is considered a key
contributor to the sustained summer blooms of low SCR characteristic of the SAZ (figure 1c).

Together, these results emphasize the importance of fine-scale dynamics in dictating the
characteristics of the seasonal cycle by driving both iron and light supply [65]. The insights
gained from this body of work highlight the value of high resolution, sustained observations
and their integration with biogeochemical models for targeting processes otherwise unresolvable
with ship-board measurements, particularly in the remote Southern Ocean.

(b) Insights from BGC-Argo and the Southern Ocean carbon and climate observations
and modelling project

Next, we highlight insights gained from another Southern Ocean programme that uses
autonomous underwater vehicles, specifically profiling floats. BGC-Argo is an extension of the
Argo Program to include biogeochemical observations and subsequent products for investigating
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the impact of global change on biogeochemical cycles and ecosystems (https://biogeochemical-
argo.org/). As with gliders, profiling floats equipped with appropriate sensors allow for an
investigation of the coupling between ocean physics and biogeochemistry at scales that can
address the seasonal cycle. These include approximations of NCP (e.g. [66,67]), carbon export
[68] and phenology [69], all of which contribute towards a more constrained understanding of
the BCP. SOCCOM is a multi-institutional US based program that uses a large fleet of BGC-
Argo deployments (approx. 200) focused specifically on unlocking the mysteries of the Southern
Ocean by expanding the spatial, temporal and vertical observational coverage of biogeochemical
properties in this data sparse region (https://soccom.princeton.edu/). A recent SOCCOM
publication by Li et al. [70] explored the impact of mixed-layer dynamics on productivity over
intra-seasonal, seasonal and interannual time scales. Specifically, they correlated NCP anomalies
with physical parameters (i.e. MLD and mean mixed layer PAR) to examine the impact of
transient mixed-layer adjustments. Results reveal that the impact of mixed-layer dynamics on
NCP is a function of timescales. On intraseasonal time scales, MLD and NCP are anticorrelated
with NCP increasing with a shoaling of the mixed layer above the critical depth, primarily in
winter and spring when iron is less likely to be limiting. In summer and autumn (when the
MLD is typically shallower than the critical depth), the correlations are varied (both positive
and negative) reflecting the complex interplay of light, iron and grazing (see also [52,54,71]). On
seasonal timescales, NCP is primarily controlled by light availability, which is strongly influenced
by winter mixing and the seasonal shoaling of the MLD in spring/summer (see also [31]), whereas
on interannual timescales, NCP was weakly correlated to MLD and mean mixed layer PAR, but
only in regions characterized by deep mixed layers (i.e. the subantarctic Pacific and Indian sectors
in winter and spring). Their interannual investigation showed no correlation between deep winter
mixing and productivity in the subsequent growing season, as has been suggested in other studies
(e.g. [72,73]). Another recent study by Prend et al. [74] used BGC-Argo floats in conjunction with
satellite ocean colour to investigate the dominant scales of variability of chlorophyll-a. Their study
used three floats deployed near the Kerguelen Plateau by the Southern Ocean and Climate Field
Studies with Innovative Tools project (http://soclim.com/), selected specifically as these floats
have a higher sampling resolution (2–4 days) than standard biogeochemical Argo floats (10-day
cycle). Results confirm that sub-seasonal variability in surface chlorophyll-a is correlated with
water column integrated biomass (R = 0.81), such that high frequency adjustments in response
to episodic mixing likely reflect a growth response in biomass rather than dilution. As was the
case with satellite estimates of surface chlorophyll-a, the BGC-Argo floats reveal that interannual
variability of water column integrated biomass was dominated by the sub-seasonal component,
which suggests that inter annual adjustments in chlorophyll-a are related to event scale
forcing [74].

(c) Insights from Southern Ocean time series
Here, we present a final example of insights gained from the SOTS mooring observatory (https://
imos.org.au/facilities/deepwatermoorings/sots), an Australian contribution to the international
OceanSITES global network of time-series observations. The necessity for high frequency
observations sustained over many years to adequately characterize the Southern Ocean system
and resolve long-term climate trajectories was recognized by SOTS who installed a set of
automated moorings southwest of Tasmania in the SAZ. The observatory comprises several
elements that include a deep ocean sediment trap mooring, a surface biogeochemistry mooring
and an air-sea flux mooring measuring key processes that span a range of timescales from day–
night to ocean basin decadal oscillations. A high-resolution temporal analysis of the moored
sensors provides a phenology across four trophic levels, with results recognizing the role of
deep mixing in driving the seasonality of production, the support of higher trophic levels, and
the mediation of pelagic-benthic coupling [75]. This study emphasized the under-recognized
contributions from winter and early spring phytoplankton activity to the transfer of carbon
to the ocean interior, which is similar in magnitude to the global median, highlighting the
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importance of the Southern Ocean BCP despite its ‘high-nutrient, low chlorophyll’ status [76].
The importance of mixed layer dynamics was similarly highlighted in a study by Weeding &
Trull [77] that used high resolution measurements of dissolved oxygen and nitrogen to show
that the large majority of NCP occurred in spring in the presence of deep mixed layers, with
only small additional contributions in summer following water column stratification. By contrast,
a study by Shadwick et al. [78] used high resolution CO2 flux measurements covering a full
annual cycle to reveal the seasonal interplay between physical and biological processes, with
maximum uptake in midsummer driven by NCP. Autumn entrainment by a deepening mixed
layer reduced CO2 flux with full equilibration regained in late winter and spring when respiration
and advection contribute to complete the annual cycle. Deep winter mixing and seasonal iron
limitation were revealed as an important driver of the seasonal cycle of ecological succession
between phytoplankton-dominated communities in summer and non-algal particles such as
detritus that play a significant role in winter [79]. Of note is an autonomous system recently
developed for the SOTS mooring that will observe the full seasonal cycle of iron concentrations at
subnano molar concentrations shedding light on seasonal variability of iron limitation [80]. These
results will complement NPQ estimates of iron stress from fluorescence which have similarly
been shown by Schallenberg et al. [81] to be indicative of phytoplankton physiological state with
respect to iron limitation.

3. Implications for different sampling scales
The Southern Ocean is characterized by the ubiquitous presence of energetic mesoscale structures
(oceanic cyclonic and anticyclonic eddies) that are interspersed with a rich array of smaller-
scale (submesoscale) filaments [82,83]. Overlaid on this complex ocean is a weather system that
is characterized by the passage of storms that are frequent (e.g. 4–8 days [33]), immense (e.g.
approx. 1000 km in diameter [84]) and intense (greater than 0.8 N m−2 [85]). The last two decades
of research have highlighted the importance of the interaction of these spatial dynamics with
synoptic storms on dictating phytoplankton biomass and distribution, making it clear that a
complete understanding of the sensitivity of the Southern Ocean to climate change requires
ongoing efforts to address these important scales of variability. Failing to do so will result in
incorrect estimates of the seasonal cycle, the annual mean and/or the variability of the system
with implications for accurately determining the trajectory of the BCP and its sensitivity to climate
change.

This argument is emphasized when subsampling a high-resolution dataset from the Southern
Ocean to determine the minimum sampling frequency required to adequately quantify the
seasonal characteristics of the time series. This approach was first proposed by Monteiro et al.
[86] for a high-resolution CO2 flux dataset from a wave glider. When similarly applied to a glider
time series in the SAZ, i.e. subsampling the surface chlorophyll-a spring and summer time series
(at the dominant periods of variability), the range of variability in the means is shown to increase
substantially with a decrease in sampling frequency, indicative of a decrease in the likelihood of
predicting the correct mean (electronic supplementary material, figure S3a,c). However, capturing
the seasonal mean is not necessarily an adequate determinant of the seasonal cycle as it says
little about the range of expressed variability. A comparison of the standard deviations of the
subsampled time series (electronic supplementary material, figure S3b,d) shows that a poorly
sampled time series could misinterpret the range of variability by as much as 25% in spring (15-
day periodic subsample) and 29% in summer (22-day periodic subsample). These results (akin to
those of [87] and [88]) reveal the sensitivity of the seasonal cycle of chlorophyll-a (and likely other
biogeochemical variables) to the selected sampling frequency, which is related to the dominant
scales of variability that are typically less than 10 days.

4. Linking phytoplankton dynamics to carbon export
Only a small fraction of the organic carbon fixed by primary production in the surface sunlit layers
ultimately reaches the ocean interior [89–91], and it is uncertain what factors control the fraction
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of production that is exported (export efficiency) or how effectively this material is transferred
to depth (transfer efficiency) [92]. Factors that regulate phytoplankton growth (light, nutrients),
particle formation and rates of sinking (aggregation, fragmentation, ballasting, senescence,
grazing, viral lysis) and remineralization (microbial activity, chemical dissolution) all modify the
extent to which fixed particulate organic carbon (POC) is transformed to dissolved organic carbon
(DOC) and effectively exported and hence the efficiency of the BCP. These uncertainties were
highlighted in a study by Henson et al. [27], which summarized 12 key processes that influence the
climate sensitivity of export flux (that includes among others: particle fragmentation, zooplankton
vertical migration, phytoplankton size effects on sinking and temperature/oxygen-dependent
remineralization) and raised major concerns that ten of these key processes are currently missing
from the majority of climate models. Their absence is considered to be partly due to a deficient
mechanistic understanding of their complex role in export flux and/or a paucity of suitable
observations (particularly at the relevant time and space scales) necessary to derive effective
model parameterizations or validate model outputs.

Despite the complex interactions that determine the fraction of production being exported, we
anticipate that since primary production, as the input to the BCP, is dominated by sub-seasonal
scales of variability, it follows that the magnitude and efficiency of the BCP may be susceptible
to similar scales of variability (as proposed in Henson et al. [93] and Giering et al. [94]). Indeed,
Resplandy et al. [95] used a submesoscale permitting biophysical model to quantify the impact
of small-scale physical carbon pumps and concluded that eddy-driven subduction hot spots and
heterogeneities in the mixed layer at small spatial scales play a critical role in exporting carbon.
However, assessing carbon export at these scales using conventional methods (e.g. ships and
sediment traps) poses significant challenges, highlighting the need for innovative approaches
that can resolve particle flux at high frequency.

(a) Estimating carbon export from optical sensors on autonomous platforms
When mounted on autonomous platforms, optical sensors of particle backscatter are able to
provide estimates of the vertically resolved and time-varying fields needed to approximate small
particle POC flux driven by mixed layer variations (e.g. [68,96]), subducted POC flux associated
with small-scale ocean features (e.g. [97]), large particle aggregate flux [98], transfer efficiency [99]
and fragmentation rates [100]. Results from the application of these approaches are beginning to
reveal substantial regional and temporal variability in the magnitude of flux and its attenuation.

As far back as 2002, Bishop et al. [101] used Carbon Explorer [102] floats to highlight the link
between production and export with a two- to sixfold increase in carbon export to 100 m observed
in response to ‘in patch’ enhanced production from the effects of iron fertilization during the
Southern Ocean Iron Experiment. More recently, Llort et al. [97] identified large variability in
carbon export from BGC-Argo profiles caused by subduction events that were associated with
regions of high eddy kinetic energy associated with meso and submesoscale eddies and jets.
Moreau et al. [103] assessed patterns in the fate of phytoplankton blooms in the sea ice zone of the
Weddell Sea and Indian Ocean sector (using 7 BGC-Argo floats) and revealed distinct seasonality
in the two dominant loss terms of sinking flux (10%) and grazing (90%). Giddy et al. [73], used
both gliders and floats in the Northeast Weddell Gyre to reveal distinct interannual differences
in bloom characteristics (amplitude and duration), export rates and transfer efficiency. Notably,
despite large interannual variability in NPP and export at 100 m, the export at 170 m was similar
between two years, highlighting interannual differences in flux attenuation and export efficiency
attributed to community composition, grazing and water column density structure (Giddy et al.
[73]). Both seasonal and intra-seasonal variability in POC flux magnitude and efficiency was
similarly observed in a four-month deployment of multiple gliders by the GOCART project
(Gauging Ocean organic Carbon Attenuation using Robotic Technologies) downstream of South
Georgia [99]. Here export efficiencies were high prior to the bloom peak (implying minimal
heterotrophic consumption) but transfer efficiency was low, while during the post peak phase
export flux decreased with a concomitant increase in transfer efficiency to the upper mesopelagic
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but a decrease in the lower mesopelagic. Notably, the proportion of primary production to reach
100 m below the export depth varied from 5 to 30% in the space of a week, confirming that
carbon flux (its export and transfer efficiency) is highly episodic. These results highlight that
flux attenuation varies seasonally, intra-seasonally and with depth, which is contrary to typical
assumptions that are applied when extrapolating data to the global scale (e.g. [13]). Indeed,
assuming time-invariance by applying a cruise-period mean export and transfer efficiency to the
cruise integrated NPP resulted in an underestimate of export and sequestration flux by 49% and
45%, respectively [99].

These insights highlight the magnitude and characteristics of temporal variability in export
flux and attenuation which would be impossible to achieve with shipboard campaigns alone.
However, despite the obvious advantages of autonomously derived particle flux data, we
nevertheless remain unable to identify all the underlying processes driving the observed
variability. This is because organic matter export to the ocean’s interior is governed by a complex
interplay of mechanisms, the effects of which may be synergistic or antagonistic and highly
variable both spatially (regionally and with depth) and temporally (from daily to seasonal
and inter-annual). Ongoing technological developments, such as those that incorporate camera
systems onto autonomous vehicles (e.g. [104]), have the potential to expand our understanding
of this complex interplay, as do projects such as COMICS [105] and EXPORTS [106] that take a
multidisciplinary approach to observing the BCP.

5. Closing the gap between fine-scales and long-term trends: future
recommendations

The Southern Ocean accounts for most of the uncertainty in global Earth System Model (electronic
supplementary material) estimates of both contemporary and end of century projections [107–
110], with wide intermodel spread between electronic supplementary material and observations
that highlight major uncertainties in our ability to accurately represent biophysical mechanisms
[2,110]. This highlights the essential need for new approaches to the development of model
constraints and low uncertainty global carbon budgets. Although the majority of electronic
supplementary material are able to capture the basic large-scale distribution of phytoplankton
(when compared with satellite observations) [111], they are not able to adequately resolve the
timing and magnitude of the Southern Ocean seasonal cycle (e.g. [112–114]). These inaccuracies
highlight a lack of understanding of key biogeochemical processes and the scales at which
climate and biogeochemistry are linked [115], diminishing our confidence in their long-term
projections. Two of the major sources of this uncertainty lies in biases that arise from incorrect
parameterization of processes such as those that reflect the functional aspects of primary
production and carbon export in the Southern Ocean and/or not resolving the appropriate
scales of dynamics in physical–biological coupling (mesoscale and submesoscale). Insights from
autonomous platforms highlight the characteristics of variability (both spatially and temporally)
in the BCP (from carbon production to its export and transfer efficiency), but what is being
observed in the ocean is not being adequately translated into models, highlighting the need
to incorporate these findings into our conceptual understanding of the BCP, and hence into
new model developments. Accurate parameterizations of phytoplankton physiology and carbon
export efficiency are also hindered by our current state of conceptual understanding, limited
observational data for model evaluation, and computational expense for extensive model
sensitivity experiments [116]. For example, although substantial progress has been made in
understanding the range of Southern Ocean iron supply mechanisms and biogeochemical cycling
processes that act to govern contemporary primary production [117,118], there is an ongoing need
to improve iron parameterizations in models [12,119]. There is also a need to focus research efforts
on zooplankton-mediated carbon flux and improved representation of their key role in models
[27,120]. Another recognized gap is an incomplete understanding of how global ocean change
will affect phytoplankton and their grazers, with recommendations to upscale laboratory studies
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to field experiments [121] to yield insights into trophic level responses to projected future oceanic
conditions [116].

The emphasis on understanding fine-scale dynamics, and adequately parameterizing them in
global climate models, has gained traction over the years and is now at the forefront of Southern
Ocean research. For example, two modelling studies by Nicholson et al. [118,122] support the
argument (emerging in particular for the SAZ) that in addition to deep winter entrainment and
recycling [72], intermittent storm-driven mixing plays an important role in extending the duration
of summertime production through event scale entrainment. The first [122], represents the mean
characteristics of MLD perturbations in a one-dimensional biogeochemical model using a high-
resolution SAZ glider deployment to reflect the impact of summer wind events. The prolonged
summer bloom was only possible to emulate when incorporating a sub-seasonal iron supply
mechanism through storm driven mixing and stronger diffusivities beneath the surface mixing
layer (electronic supplementary material, figure S4). A second follow up study [118], used an
idealized eddy-resolving physical-biogeochemical model with seasonal buoyancy forcing and
zonal winds overlaid by storms to simulate seasonal and intraseasonal iron supply pathways.
It showed that eddy-driven advection can contribute in equal proportions to seasonal surface
iron supplies as winter convection. Further, Nicholson et al. [118] confirm that in summer,
storms enhance both the diffusive and advective supply of iron in support of increased primary
production (by 20%), particularly over regions of strong ocean fronts (electronic supplementary
material, figure S5). Similarly, Uchida et al. [123] ran a numerical simulation at submesoscale
permitting resolution forced with a realistic seasonal cycle and showed that eddy transport of
iron across the base of the mixed layer provides a crucial supply of iron in support of enhanced
primary production (that overcompensates for any loss due to eddy subduction) in the open
Southern Ocean.

The important role of fine-scale variability in dictating the characteristics of the Southern
Ocean seasonal cycle was also highlighted in a recent publication by Prend et al. [74] that
applied a time-series decomposition of satellite chlorophyll-a to highlight distinct regional
differences in the dominant timescales of chlorophyll-a variability (electronic supplementary
material, figure S6). Non-seasonal variability was shown to dominate most parts of the Southern
Ocean (outside of the subtropics), reflecting sub-seasonal fluctuations over small spatial scales
(approx. 50–150 km). Their results (corroborated by water column integrated chlorophyll-a from
three BGC-Argo floats off Kerguelen) suggest that sub-seasonal variability exceeds inter-annual
variability and as a result, year-to-year variations of annual mean chlorophyll-a primarily reflect
high frequency events related to localized forcing such as storms and eddies, rather than low-
frequency climate modes (such as the Southern Annular Mode). This is because the magnitude
of the seasonally integrated bloom is dictated by the sum of intermittent pulses occurring
at approximately weekly timescales (as hypothesized for the light green regions in figure 1c
[29]). The impact of this understanding is that changes in annual mean chlorophyll-a (and by
association the BCP) are tied to forcings that drive sub-seasonal fluctuations [74], such that the
impact of climate variability will likely be reflected in localized responses to adjustments in
wind [124–126] and/or eddy activity [127,128]. That said, although the degree to which large-
scale atmospheric variability drives intense short-term wind events remains unclear [129,130],
a study by Hell et al. [131] statistically explored variability in the SAM (i.e. large-scale modes
of atmospheric variability) with short-term surface wind and stress. Results from time-varying
5-day probability density functions confirm that the first two modes of wind (72% of total
wind variance) and stress (74% of total stress variance) are highly correlated (R = 0.82) with the
SAM. The implication of these findings is that large-scale low-frequency climate modes may still
be considered important in determining the trajectory of the BCP, although indirectly through
their influence on high frequency storm intensity. Notably, if storm driven interactions with
the MLD are the primary driver of the characteristics of the seasonal bloom (and inter-annual
variability), then the regional nature and long-term trends in storm characteristics may be an
important influence in the future role of the Southern Ocean in the carbon-climate system [86]. It
is thus necessary that we work towards the paramaterization of fine-scale (sub-grid) dynamics
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in earth system models at a low computing overhead for improved confidence in climate
trajectories.

Satellite remote sensing of ocean colour is the only observational capability that can provide
synoptic views of upper ocean phytoplankton characteristics at high spatial and temporal
resolution (approx. 1 km, daily) and high temporal extent (global scales, for years to decades).
In many cases, these are the only systematic observations available for chronically under-
sampled marine systems such as the Southern Ocean. It is thus necessary that we maximize the
value of remote sensing observations for this globally critical region by developing ecosystem-
appropriate, well characterized ocean colour products. Phytoplankton cell size and elemental
stoichiometry impose fundamental constraints on growth rates, food web structure and the
biogeochemical cycling of carbon [132]. Despite the large variability evident across projected
climate driven shifts in phytoplankton community composition [133] a reduction in dominant size
and a shift away from diatoms is considered a particularly strong driver of projected decreases in
export [134]. As such, a primary goal of the endeavour to maximize outputs from remote sensing
observations is to provide information on the phytoplankton community (e.g. size structure and
taxonomic composition), which translates into carbon export. This was achieved in a study by
Siegel et al. [135] that combined satellite-based estimates of primary production [136] and particle
size distribution from backscatter [137] with a food-web model for global assessments of sinking
carbon export. This approach was able to effectively capture seasonal cycles in carbon export
and assess drivers of interannual variability (equatorward of 50o) providing a diagnostic tool for
addressing time and space variability in the processes driving carbon export [135]. That said,
the fidelity of this approach is highly dependent on the ability of remote sensing algorithms
to accurately determine primary production and particle size. Although some ocean colour
algorithms can accurately derive chlorophyll-a for the Southern Ocean [138], the simple lack of
in situ data means that satellite product retrieval algorithms are typically not well tailored to the
Southern Ocean, and their performance is generally unreliable or even largely unknown [139].
Concerning optical products in particular, evidence suggests that the unique photophysiological
characteristics of Southern Ocean phytoplankton (e.g. cellular adjustments to light and iron stress)
may play a large role in determining their distinct characteristics of absorption [140]. Additionally,
particulate backscatter in the Southern Ocean has been observed to imply regionally unusual
particulate assemblage characteristics [141]. As such, Inherent Optical Property retrievals from
standard ocean colour algorithms cannot be used with confidence in the Southern Ocean when
parameterized primarily with low-latitude bio-optical datasets whose properties differ from those
of the Southern Ocean [75]. These shortcomings are propagated when deriving biogeochemical
products (e.g. size structure [142], carbon content [143,144] and phytoplankton functional type
[145,146]), for which results are typically extremely variable, with large disagreement between
products. These issues highlight the need for ongoing efforts to apply emerging techniques to
derive a causal understanding of the unique characteristics of Southern Ocean bio-optics towards
the optimization and development of regionally robust information from ocean colour that will
allow new insight into event, seasonal, inter-annual and long-term variability in ecosystem
physical drivers and their biogeochemical response.

Despite their obvious spatial and temporal advantages, remotely detected water-leaving
radiances emanate from only the first optical depth and give little quantitative information
about the vertical structure of the water column. Arguably the frontier in ocean observation
is sustained spatial sampling of the subsurface ocean [147] by autonomous platforms (e.g.
gliders and floats) that have the capacity to address fine-scale variability in physical drivers
and biological response (relating to both productivity and export). Gliders and floats are able
to profile the water column (0–1000 m) at high frequency to provide highly cost-effective
measurements of physical structure and biogeochemistry at smaller scales, but also for sufficiently
long periods to address uncertainties associated with carbon budgets at longer time scales
(weeks—months). In addition, the volume of information that a single glider or BGC-float mission
retrieves, can be instrumental in developing and validating statistically robust parameterizations
for numerical models, which are otherwise performed with oftentimes inadequate datasets

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 J

un
e 

20
23

 



14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220068

...............................................................

generated from once-off or ‘classical’ (low spatial and/or low temporal frequency) sampling
techniques. A comprehensive review by Swart et al. [50] summarizes a decade of mechanistic
understanding gained from autonomous platforms on the role of fine-scale processes influencing
mixed layer variability. In addition, there is evidence of the growing potential of these
platforms to measure rates of production, respiration, carbon export, sinking fluxes and particle
fragmentation [96,98,100,148,149]. Given their importance in the trajectory of ocean ecosystem
understanding, it is fundamental that we continue to develop new methods and sensors for
detecting biogeochemical properties from autonomous platforms.

Integrating these research approaches, i.e. ocean colour remote sensing, the network of BGC-
Argo floats, glider missions and stationary moorings, is necessary for accumulating the temporal
and spatial data coverage needed to improve our understanding of the Southern Ocean BCP
[120]. The next challenge is to find ways of synthesizing this information (from remote sensing
and autonomous platforms) from a wide range of environmental conditions and spatio-temporal
scales into robust mechanistic parameterizations for global models, and/or global validation
datasets for model comparisons [27].

Data accessibility. The data to create figure 1 can be downloaded from the Ocean-Colour Climate Change
Initiative (OC-CCI) website with the methods to produce the figure clearly defined in Thomalla et al. (2011).
The data for figure 2 have been added to Zenodo with a corresponding (https://doi.org/10.5281/zenodo.
7108117 [150]).
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production and export from Seaglider measurements in the North Atlantic after the spring
bloom. J. Geophys. Res. Oceans 119, 6121–6139. (doi:10.1002/2014JC010105)

149. Arteaga LA, Behrenfeld MJ, Boss E, Westberry TK. 2022 Vertical structure in
phytoplankton growth and productivity inferred from biogeochemical-argo floats and
the carbon-based productivity model. Global Biogeochem. Cycles 36, e2022GB007389.
(doi:10.1029/2022GB007389)

150. Thomalla SJ, Ryan-Keogh T. 2023 Code for: understanding the sensitivity of the Southern
Ocean Biological Carbon pump to climate change: Insights from a seasonal cycle approach.
Zenodo. (doi:10.5281/zenodo.7108117)

151. Thomalla SJ et al. 2023 Southern Ocean phytoplankton dynamics and carbon export: insights
from a seasonal cycle approach. Figshare. (doi:10.6084/m9.figshare.c.6602317)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 J

un
e 

20
23

 

http://dx.doi.org/10.1002/2014JC010105
http://dx.doi.org/10.1029/2022GB007389
http://dx.doi.org/10.5281/zenodo.7108117
http://dx.doi.org/10.6084/m9.figshare.c.6602317

	Background and rationale
	Accessing the fine-scale through autonomous platforms, remote sensing and modelling
	Insights from the Southern Ocean carbon and climate observatory
	Insights from BGC-Argo and the Southern Ocean carbon and climate observations and modelling project
	Insights from Southern Ocean time series

	Implications for different sampling scales
	Linking phytoplankton dynamics to carbon export
	Estimating carbon export from optical sensors on autonomous platforms

	Closing the gap between fine-scales and long-term trends: futurerecommendations
	References

