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Abstract 26 

Wetlands store higher carbon content relative to other terrestrial ecosystems, despite 27 

the small extent they occupy. The increase in temperature and changes in rainfall 28 

pattern may negatively affect their extent and condition, and thus the process of 29 

carbon accumulation in wetlands. The introduction of the Sentinel series (S1 and S2) 30 

and WorldView space-borne sensors have enabled monitoring of herbaceous above 31 

ground biomass (AGB) in small and narrow wetlands in semi-arid area.  The 32 

objective of this study was to assess (i) the capabilities of the high to moderate 33 

resolution sensors in estimating herbaceous AGB of vegetated wetlands and (ii) 34 

whether significant differences exists between the AGB ranges of wetland and 35 

surrounding dryland vegetation. WorldView-3 (WV3) yielded the highest AGB 36 

prediction accuracies (R2 = 0.63 and RMSE = 169.28 g/m2) regardless of the 37 

incorporation of bands only, indices only or the combination of bands and indices. In 38 

general, the optical sensors yielded higher modelling accuracies (improvement in R2 39 

of 0.04-0.07 and RMSE of 11.48-17.28 g/m2) than the single Synthetic Aperture 40 

Radar (SAR) sensor but this was marginal depending on the scenario.  Incorporating 41 

Sentinel 1A (S1) dual polarisation channels and Sentinel 2A (S2) reflectance bands, 42 

in particular, yielded higher accuracies (improvement in R2 of  0.03-0.04 and RMSE 43 

of 5.4-16.88 g/m2) than the use of individual sensors alone and was also equivalent 44 

to the performance of the high resolution WV3 sensor results. Wetlands had 45 

significantly higher AGB compared to the surrounding terrestrial grassland (with a 46 

mean of about 80 g/m2 more). Monitoring herbaceous AGB at the scale of the 47 

wetland extent in semi-arid to arid grassland enables improved understanding of 48 

their carbon sequestration potential and serves as a proxy for functional intactness.  49 
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 53 

1. Introduction 54 

The above ground biomass (AGB) of wetland vegetation contributes to peat 55 

formation and subsequently to carbon sequestration. The inundation of wetlands 56 

favours carbon sequestration, while a number of biotic, thermal and chemical 57 

processes, as well as the intactness of the wetland and vegetation types can 58 

increase the rate of accumulation (Amundson, 2001; Nahlink and Fennessy, 2016). 59 

Despite the small extent of wetlands (estimated at 5-8%), it is estimated that they 60 

store a higher carbon content relative to other terrestrial ecosystems (Amthor et al., 61 

1998; Kayranli et al., 2010; Mitsch and Gosselink, 2015). A number of threats 62 

prohibit this continuous process of organic carbon accumulation, including land 63 

transformation to urban, cropland or forestry, alteration of the hydrological regime of 64 

wetlands, continuous grazing or fire regimes (Jones and Donnelly, 2004; Kayranli et 65 

al., 2010). The increasing temperatures observed and predicted for climate change, 66 

as well as the associated increase in evapotransporation and changing rainfall 67 

patterns, may exacerbate current pressures (Poiani et al., 1995; Jones and Donnelly, 68 

2004; IPCC, 2013; MacKellar et al., 2014; Van Wilgen et al., 2016). To facilitate the 69 

monitoring of the process of AGB accumulation in palustrine wetlands and adjacent 70 

grasslands, frequent temporal monitoring at a regional scale is required.  71 

 72 
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Traditional assessments of herbaceous AGB in wetland are a tedious procedure, 73 

requiring in situ samples across various and often inaccessible terrains. AGB 74 

measured in the field ranged from 30 to 1 720 g/m², depending on the 75 

hydrogeomorphic wetland type, climatic region and vegetation growth, as reviewed 76 

by Truus (2011). Grasses and sedges AGB (dry weight) showed ranges between 30 77 

– 200 g/m², whereas macrophytes such as Phragmites species AGB ranged from 78 

300 to 1300 g/m² (Truus, 2011). More information, however, is required for palustrine 79 

wetlands, located in semi-arid regions of the southern hemisphere. Destructive 80 

methods of quantifying grass AGB are, however, time consuming and costly and are 81 

often limited to a number of sites. In wetlands physical measurement of AGB is also 82 

strongly limited due to issues of manoeuvrability and access due to the presence of 83 

water. Remote sensing technology, in contrast, has established non-destructive 84 

methods for estimating total biomass and the carbon stock in vegetation at a regional 85 

scale and in inaccessible areas (Liao et al., 2013).  86 

 87 

Regional estimation of AGB with remote sensing has mostly been done in the 88 

terrestrial environment, with limited studies focusing on wetland vegetation. For the 89 

large Poyang Lake system in China, Synthetic Aperture Radar (SAR)  and optical 90 

systems were able to estimate the AGB of wetland vegetation with coefficients of 91 

determination (R²) above 0.70 and Root Mean Square Errors (RMSEs) below 140 92 

g/m2 (Liao et al., 2013; Li & Liu, 2002).  Also in China but Inner Mongolia, Xie et al., 93 

(2009) utilised empirical models, derived from optical Landsat data, to obtain mean 94 

ranges of grass AGB of up to 147g/m2.  In South Africa, the AGB of a Papyrus (alien) 95 

dominated wetland has been estimated with WorldView-2 which achieved accuracies 96 
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of R² of 0.76 and RMSE of 442 g/m2 with a predicted AGB range of 2000 to 5000 97 

g/m2 (Mutanga et al., 2012).    98 

 99 

The use of vegetation indices and the red-edge band of newer optical sensors have 100 

improved the estimation of wetland and terrestrial AGB, overcoming the saturation 101 

effect of higher AGB and dense canopies (Penuelas et al., 1993; Mutanga et al., 102 

2012; Ramoelo et al., 2015; Sibanda et al., 2017). In grasslands, vegetation indices 103 

offer the advantage of superseding the influences of soil background, atmospheric 104 

composition and the viewing and zenith angle effects while enhancing the vegetation 105 

signal, when estimating AGB. Leaf Area Index (LAI), i.e. the half of the total green 106 

leaf area per unit area (Reid and Huq, 2005), is an index which captures the energy 107 

interactions between the leaves and the environment.  LAI serves as a good 108 

indicator of vegetation growth and productivity and is also considered in the literature 109 

as proxy to AGB (Fan et al., 2009; Van Wijk and Williams, 2005; Masemola et al., 110 

2014).  Microwave radar (e.g. Synthetic Aperture Radar - SAR) technologies, on the 111 

other hand, is often favoured above optical sensors because of its cloud-penetrating 112 

capacities.  However, the differential scattering of radar signal under inundated or 113 

non-inundated scenarios in wetlands can result in errors in the estimation of wetland 114 

biomass (Silva et al., 2008; Liao et al., 2013; Gallant, 2015). The integration of 115 

optical and SAR technologies have also been proven to be more accurate than the 116 

individual technologies separately (Huang et al., 2016). Using these combined 117 

datasets, the study documented an improvement in RMSE of ~300 g/m2 compared 118 

to the best individual sensor scenario (in this case Terra ASTER and ERS-2 SAR).  119 

To date, however, most SAR and optical sensors used for estimating herbaceous 120 

AGB were coarse resolution sensors, with spatial resolutions of >30 m. In semi-arid 121 
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regions, however, the extent of wetlands is often smaller in diameter and therefore 122 

requires finer spatial resolutions.   123 

 124 

The availability of newer Earth Observation satellites such as the European Space 125 

Agency (ESA) Sentinel series, which are now freely available and operational since 126 

2015, offers new opportunities to assess the capabilities of determining AGB of 127 

palustrine wetland in temperate and semi-arid grasslands. The Sentinel 1A (S1A) 128 

satellite hosts a C-band (5.6cm) SAR sensor operating with various cross and co-129 

polarisation configurations depending on the sensing mode (Vertical-Horizontal or 130 

VH, Horizontal-Horizontal or HH, and Vertical-Vertical or VV). Volumetric backscatter 131 

interactions, from VH polarised data, and/or the use of co-polarised data (e.g. VV) for 132 

double bounce interactions with pole-like plants of the genus Phragmites (as the 133 

case in Ye et al., 2010), can allow SAR sensors to be effective for ascertaining 134 

vegetation AGB but are restricted from sensing submerged aquatic vegetation due to 135 

its inability to penetrate into the water column (Silva et al., 2008). The Sentinel 2A 136 

and 2B (S2A; S2B) optical sensors hosts a number of bands in the red-edge region 137 

of the electromagnetic spectrum, which has previously shown to produce more 138 

accurate vegetation biomass estimates (Mutanga et al., 2012; Sibanda et al., 2015). 139 

The S2A and S2B sensors also offers a spatial resolution of between 10 and 20 m, 140 

which may be better suited for the detection of the extent of wetlands in arid and 141 

semi-arid regions, compared to the previous sensors. The WorldView 3 (WV3) 142 

space-borne sensor (DigitalGlobe Pty Ltd) is also a space-borne sensor which offers 143 

a band in the red-edge region but with a spatial resolution below 1 m, however, it is 144 

costly to acquire at the regional scale. It remains to be assessed whether these 145 

sensors can determine grass AGB across dryland and wetland areas and whether 146 
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the AGB modelling accuracies between free data platforms (e.g. Sentinel series) and 147 

the high resolution state-of-the-art sensor (e.g. WV3) are comparable. The latter is 148 

yet to be tested in academic literature from a wetland grass biomass perspective.  149 

 150 

This study, thus, aimed to assess the performance of the S1, S2, and WV3 sensors, 151 

together with the addition of LAI as an additional modelling parameter, for estimating 152 

herbaceous AGB for both wetlands and surrounding drylands using spectral data 153 

and selected established indices. In particular, we (i) compared the ability of radar 154 

(S1A) and optical (S2A, WV3) sensors for estimating AGB of vegetated wetlands, 155 

separately and combined and (ii) assessed whether significant differences exists 156 

between the AGB ranges of wetland and dryland vegetation. 157 

 158 

2. Methods 159 

2.1. Study area  160 

Approximately 26% of South Africa’s surface area is dominated by the grassland 161 

biome where a variety of palustrine and lacustrine wetlands occur (Mucina & 162 

Rutherford, 2006). The grassland biome is one of the most threatened biomes in 163 

South Africa with 45% of it being transformed through expansions in agriculture, 164 

plantations, mining and alien plant species (Fourie et al., 2015). Wetlands, 165 

particularly in such a biome, are extremely fragmented ecosystems and are also the 166 

most endangered ecosystem types in South Africa (Burgoyne et al., 2000). The 167 

South African National Water Act, Act 36 of 1998, defines a wetland as ‘land which is 168 

transitional between terrestrial and aquatic systems where the water table is usually 169 
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at or near the surface, or the land is periodically covered with shallow water, and 170 

which land in normal circumstances supports or would support vegetation typically 171 

adapted to life in saturated soil.’ (RSA, 1998). Two study areas, found in the 172 

grassland montane areas of South Africa, were chosen: Hogsback and 173 

Tevredenpan. The Hogsback study area is located within one of 22 Strategic Water 174 

Source Areas of South Africa where rainfall runoff is high and which disproportionally 175 

contributes to national water security (Le Maitre et al., 2018). The Tevredenpan 176 

study area forms part of the Chrissiesmeer Protected Environment, and owing to the 177 

large density of shallow inland depressions, amongst other criteria, qualifies for 178 

Ramsar listing (MTPA, 2014). 179 

 180 

The Hogsback study area (32.55°S, 26.97°E) is located in montane grasslands of 181 

the Amathole mountain range in the Eastern Cape Province (Figure 1A, B). The 182 

latter receives between 611 and 1 239 mm rainfall per annum and experience mean 183 

annual evapotranspiration of around 1 650 mm (Middleton and Bailey, 2008). The 184 

wetland types (Figure 2B) range from valley-bottom and floodplains on lower 185 

grassland slopes to seeps on the higher slopes of the mountains, extending to areas 186 

between forest plantations of Pine and Eucalyptus species. Carex acutiformis forms 187 

dominant stands in the low-lying wetlands, with small intermittent patches of 188 

Phragmites australis. On the higher slopes a greater diversity of grass and sedge 189 

communities exist (Janks, 2014). Grazing dominates the land use with cropland, 190 

such as maize and soya, providing fodder. Forest plantations are situated to the 191 

south of the study area (Figure 1A, B).  192 

 193 
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The Tevredenpan study area (26°12’40.7”S; 30°12’42.6”E) is located in the gradually 194 

undulating plateau of South Africa in the grassland biome (Figure 1A, C). It forms 195 

part of the largest pan belt in southern Africa (Goudie and Wells, 1995). The Mean 196 

Annual Precipitation (MAP) is around 750 mm and the mean annual 197 

evapotranspiration is between 1 700 and 1 800 mm per annum (Middleton and 198 

Bailey, 2008) while  the mean annual temperature ranges from 12.4°C to 25.2°C 199 

(Schulze, 1997). Wetlands in the Tevredenpan study area feed two river systems, 200 

the Mpuluzi River in the north, and the Pearl stream in the south. A large limnetic 201 

and Phr. australis-dominated depression, called “Tevredenpan” is located in the 202 

western edge of the study area (Figure 2A) with floating macrophytes and a 203 

substrate of peatlands (Grundling et al., 2003). A large part of the soil in the valley-204 

bottoms is permanently saturated, though not inundated, whereas valley-bottom and 205 

seep wetlands on slopes are seasonally to temporary saturated. A wide variety of 206 

grass and sedge species dominate all wetlands (Sieben et al. 2014; Linström 2014), 207 

though monotype Typha capensis, Phragmites australis and Carex acutiformis has 208 

been observed for patches in the valley-bottom and river systems.  209 
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 210 
Figure 1: A) The location of the two study areas in the montane grassland biome (grey) of South Africa. B= Land cover 211 
classes for the Hogsback study area; C= Land cover classes for the Tevredenpan study area (GeoTerraImage, GTI Pty Ltd. 212 
2015) 213 

 214 

 215 

A) 
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 216 

Figure 2: Hydrogeomorphic wetland types for the (A) Tevredenpan study area and (B) Hogsback study area. 217 

 218 

Hydrogeomorphic (HGM) wetland types have been captured according to South 219 

Africa’s tiered Classification System (National Wetlands Map 5; Van Deventer et al., 220 

submitted) for inland wetlands which distinguished five HGM wetland types, namely 221 

channelled valley-bottom (CVB), unchannelled valley-bottom (UVB), depression, 222 

floodplain, seep and wetland flat wetlands (Ollis et al., 2015). This classification 223 

system was applied for both sites. Features inside the HGM wetland type boundaries 224 

were considered to be wetlands while features outside were considered to be 225 

drylands.   226 

 227 

2.2. Data collection 228 

Ground Range Detected (GRD) images of the Sentinel-1A C-band sensor, in 229 

Interferometric Wide (IW) swath mode, were acquired from the Alaska Satellite 230 

B) 
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Facility (ASF) (https://www.asf.alaska.edu/sentinel/data/). SAR imagery was 231 

acquired in the transitional seasons (spring and autumn) to allow the growth and 232 

accumulation of wetland vegetation biomass (both wetland and dryland) which can 233 

be sensed by the SAR sensor while avoiding the summer season where the bulk of 234 

the rainfall would negatively impact the backscatter.  Images of the Sentinel-2A 235 

Multi-spectral Instrument (MSI) were downloaded from the 236 

https://remotepixel.ca/projects/satellitesearch.html website, and the WV3 images 237 

were purchased from DigitalGlobe Pty Ltd (Table 1). The S2 and WW3 images were 238 

selected with <10% clouds at the middle to end of the peak of the hydroperiod in the 239 

grassland (i.e. summer to late summer), except for one S2A acquired during the late 240 

winter due to cloud presence of earlier scenes.  During this period, it is the end of the 241 

growing season of the sedges and grasses which means that there is optimal 242 

greenness with limited water inundation.  243 

Table 1: Space-borne images accessed for the two study areas in South Africa 244 

Study Area Sensor 
Final spatial 
resolution Image data Season 

Tevredenpan S1A 20m 12/04/2017 Autumn 

 
S2A 10m 19/01/2017 Summer 

 
WV3 1m 21/03/2017 Summer 

Hogsback S1A 20m 21/09/2016 Spring 

 
S2A 10m 24/08/2016 Winter 

 
WV3 1m 21/03/2017 Summer 

*S1A = Sentinel-1A, S2A =Sentinel-2A, WV3 = WorldView-3 245 

 246 

2.3. Image and data pre-processing  247 

The S1A GRD intensity datasets were processed in GAMMA (TM) SAR pre-248 

processing software.  The datasets were subjected to the following steps: combining 249 

of Sentinel-1A bursts, multi-looking, radiometric calibration (from digital numbers to 250 

sigma nought backscatter), geocoding and topographic normalization. In order to 251 

https://www.asf.alaska.edu/sentinel/data/
https://remotepixel.ca/projects/satellitesearch.html
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reduce typical SAR speckle, multi-looking factors of 2 and 2 were applied to the 252 

range and azimuth directions, respectively. The Shuttle Radar Topography Mapper 253 

(SRTM) Digital Elevation Model (DEM) at 30 m pixel size (SRTM 30) was used for 254 

geocoding and topographic normalization. The Sentinel-1 images were processed to 255 

a final spatial resolution of 20m.  Sentinel-2 images were acquired at the 1C 256 

processing level which included orthorectification as a pre-processing step.  The 257 

Sen2Cor algorithm, available through the ESA’s Sentinel Application Platform 258 

(SNAP), were used to atmospherically correct the multispectral Sentinel-2A images.  259 

The algorithm parameter were chosen based on the location and environment type 260 

of the study sites as well as the values recommended in the Sen2Cor configuration 261 

and user manual (Mueller-Wilm, 2017).   262 

 263 

2.4. Field AGB and LAI sampling  264 

Field visits were made to the study sites in November 2016 for Hogsback and in 265 

March 2017 for Tevredenpan for the collection of wet AGB and LAI data for 62 266 

sample plots (30 sites from Hogsback and 32 from Tevredenpan). We selected 267 

6X6m sample plots within homogeneous patches (generally bigger than 20X20m to 268 

take into account the pixel size of Sentinel 1) in terms of dominant species 269 

composition and general grass structure (height, cover and AGB).  These plots 270 

prioritised the capturing of the representative range of AGB.  A differentially 271 

corrected GPS location (less than 50cm horizontal error using a Trimble GEO 7X 272 

GPS) was acquired from the centre point of each sample plot. Within each sample 273 

plot, three 0.5X0.5m quadrants were randomly placed from which wet herbaceous 274 

AGB was harvested, weighed, and subsequently averaged over the entire sample 275 

plot.  Also within each 0.5X0.5m quadrant, three leaf area index (LAI) measurements 276 



14 
 

were taken from the LiCOR LAI-2200C Plant Canopy Analyzer which were also 277 

averaged over the entire sample plot. The plot level LAI measurements were then 278 

utilised as an additional independent variable in the modelling procedure (motivated 279 

for in section 2.6).  LAI was also considered in the literature as proxy to AGB (Fan et 280 

al., 2009; Van Wijk and Williams, 2005).  The wet herbaceous AGB was 281 

subsequently dried in an oven at 80°C until the weight stabilised (i.e. no change in 282 

weight over a 48 hour period) to get dry AGB measurements which were used as the 283 

dependent variable in the modelling procedure.   284 

 285 

2.5. Extraction of remote sensing data and computation of vegetation 286 

indices and regional LAI 287 

For the extraction of the remote sensing predictors or independent variables, the 62 288 

sample plot 6X6m polygons and point shapefiles (centred over the GPS locations) 289 

were used depending on the spatial resolution of the remote sensing datasets.  The 290 

62 sample plot points were used to extract a single pixel value of S1A (backscatter) 291 

and S2A (reflectance band values) while the 62 sample plot 6X6m polygons were 292 

used to extract the mean reflectance band values from WV3.  293 

 294 

The presence of free running or standing water in wetlands does alter the overall 295 

spectral signal in optical sensors as water absorbs electromagnetic radiation. 296 

Despite this fact, particular spectral regions such as the green region, with greater 297 

light penetration in water (Kirk, 1994) and the NIR and red- edge regions (Mutanga 298 

et al., 2012) have been proven useful in studying submerged and non-submerged 299 

wetland vegetation. These spectral regions can be combined in the form of VIs and 300 
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band ratios which have been proven to correlate highly with wetland vegetation 301 

biomass (Huang et al., 2016, Adam et al., 2010, Mutanga et al., 2012).  A variety of 302 

VIs and band ratios, which were known to correlate well with AGB estimation and 303 

vegetation structure, were derived from the reflectance and backscatter polarisation 304 

data (Table 2 below). 305 

 306 

Table 2: Formulae of Vegetation Indices and band ratios used as model predictor variables  307 

Index Formula 
Sentinel-1 Sentinel-2 WorldView-3 

Bands θ Bands σ Bands ß 

NDVI Red Edge 1 (NIR -RE)/(NIR+RE)   (B8-B5)/(B8+B5)   

NDVI Red Edge 2 (NIR -RE)/(NIR+RE)   (B8-B6)/(B8+B6) (B8-B6)/(B8+B6) 

NDVI Red Edge 3 (NIR -RE)/(NIR+RE)   (B8-B7)/(B8+B7)   

NDVI Red Edge 4 (NIR -RE)/(NIR+RE)     (B7-B6)/(B7+B6) 

NDVI Green 1  (NIR -GR)/(NIR+GR)   (B8-B3)/(B8+B3) (B8-B3)/(B8+B3) 

NDVI Green 2  (NIR -GR)/(NIR+GR)     (B7-B3)/(B7+B3) 

Band Ratio 1 NIR/RE   B8/B5   

Band Ratio 2 NIR/RE   B8/B6 B8/B6 

Band Ratio 3 NIR/RE   B8/B7   

Band Ratio 4 NIR/RE     B7/B6 

Band Ratio 5 NIR/GR   B8/B3 B8/B3 

Band Ratio 6 NIR/GR     B7/B3 

SAR Band Ratio VH/VV B2/B1     
B: band (sensor specific); NIR: Near Infrared; RE: Red Edge; GR: Green; VH and VV: cross and co-polarisations 

θ: B2 = VH, B1 = VV; σ: Refer to https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial for band identities; ß = 

Refer to http://www.landinfo.com/WorldView3.htm for multispectral band identities 

 308 

 309 

Depending on the number of bands available in each sensor the following summary 310 

of derived VIs and band ratios were made.  S1A predictor variables included VH and 311 

VV backscatter channels and the VH/VV band ratio. S2A predictor variables included 312 

10 reflectance bands, 3 Red Edge and 1 Green band NDVI indices and 4 reflectance 313 

band ratios.  WV3 predictor variables included 7 reflectance bands, 2 Red Edge and 314 

2 Green band NDVI indices and 4 reflectance band ratios. This resulted in a 315 

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial
http://www.landinfo.com/WorldView3.htm
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modelling dataset consisting of 36 remote sensing predictor variables and field 316 

based LAI measurements.  317 

 318 

Since field LAI was used as an additional predictor to model AGB the spatial 319 

distribution of LAI across both study areas was required to apply the AGB models 320 

across the images. The spatial maps of LAI were created by using an LAI PROSAIL 321 

radiative transfer model (RTM) (executed in Environment for Visualizing Images 322 

Integrative Development Language or ENVI IDL), developed from Darvishzadeh et 323 

al. (2008), which was applied to the preferred optical image that emerged from the 324 

modelling scenarios.  Table 3 below, documents the various environmental variable 325 

settings used in this study which was specific for the acquisition data and was 326 

parameterised using the LAI range from the ground data. 327 

Table 3: Specific range values of the tuning parameters within the LAI PROSAIL radiative transfer model 328 

Variable 
Hogsback Tevredenpan 

Min Max Min Max 

Chlorophyll (μg/cm2) 0 90 0 90 

Leaf Area Index (m2/m2) 0 10 0 10 

Carotenoid Content (μg/cm2) 0 25 0 25 

Total Brown Pigment (unit less) 0 1 0 1 

Equivalent Water Thickness (cm) 0.004 0.04 0.004 0.04 

Dry Matter Content (g/cm2) 0.0019 0.165 0.0019 0.165 

Leaf Structure Parameter (N) 1.2 (Mean) 
0.3 

(Std) 1.2 (Mean) 0.3 (Std) 

Average Leaf Angle (°) 25 80 25 80 

Hot Spot (m/m) 0.2 (Mean) 
0.01 
(Std) 0.2 (Mean) 0.01 (Std) 

Viewing Zenith Angle (°) 6.2 6.2 7.7 7.7 

Solar Zenith Angle (°) 25.25 25.25 28.39 28.39 

Rel. Azimuth Angle (°) 153.32 153.32 164.11 164.11 

Soil Coefficient (unit less) 0 1 0 1 

Note:       Diffuse Fraction of 0.70 and default soil reflectance profile 
                 10000 number of Look-up samples and 85 Random Seed 

 329 

2.6. Random Forest modelling and modelling scenarios 330 
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A Random Forest (RF) machine learning algorithm was used as the regression 331 

approach for this study. The following modelling scenarios (18 in total) were 332 

implemented (the number of inputs is listed in parentheses, refer to Table 2): 333 

1) S1 only, 3 scenarios: backscatter (2), SAR band ratio (1) and backscatter + 334 

SAR band ratio (3) 335 

2) S2 only, 3 scenarios: reflectance (10), VIs + reflectance band ratios (8) and 336 

reflectance + VIs + reflectance band ratios (18) 337 

3) WV3 only, 3 scenarios: reflectance (7), VIs + reflectance band ratios (8) and 338 

reflectance + VIs + reflectance band ratios (15) 339 

4) S1 + S2, 3 scenarios: backscatter + reflectance (12), VIs + SAR band ratio + 340 

reflectance band ratios (9) and backscatter + reflectance + VIs + SAR band ratio + 341 

reflectance band ratios (21) 342 

5) S1 + WV3, 3 scenarios: backscatter + reflectance (9), VIs + SAR band ratio + 343 

reflectance band ratios (9) and backscatter + reflectance + VIs + SAR band ratio + 344 

reflectance band ratios (18) 345 

6) S2+WV3, 3 scenarios: reflectance (17), VIs + reflectance band ratios (16) and 346 

backscatter + reflectance + VIs + reflectance band ratios (33) 347 

 348 

RF is widely considered to be more robust than other parametric regression 349 

techniques (Naidoo et al., 2014; Ismail and Mutanga, 2010) and have been utilised in 350 

similar remote sensing studies of grass biomass estimation (Adam et al, 2014; 351 

Mutanga et al., 2012; Ramoelo et al., 2015).  Due to the large number of predictor 352 

variables a RF-based variable importance selection procedure was conducted, using 353 
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the ‘caret’ package in R statistical software, to remove highly co-linear variables 354 

which likely may cause model overfitting. This process was based on the percentage 355 

inclusive mean squared error (%IncMSE), and was implemented for modelling 356 

scenarios which required more than 10 predictor variables as inputs.  During the 357 

variable importance selection process, 100 bootstrapped RF models, which utilised a 358 

70% versus 30% split in training and validation datasets, were computed for each 359 

scenario and the %IncMSE values of each of the predictor variables were averaged 360 

across the 100 iterations and ranked. The ten predictor variables with the highest 361 

%IncMSE values were used. For modelling the AGB retrieval, 100 bootstrapped RF 362 

models were computed again but using only the top 10 ranked predictor variables.  363 

This bootstrapping approach was implemented for added robustness and mean 364 

validation accuracy statistics (coefficient of determination or R², Root Mean Square 365 

Error or RMSE and Standard Error of Prediction or SEP) were recorded to determine 366 

the performance of the different modelling scenarios.  Preliminary analysis of the 367 

different modelling scenarios which included and excluded field based LAI illustrated 368 

that the inclusion of LAI markedly improved modelling accuracies (and LAI was the 369 

most important input variable from an RF variable importance perspective) and was 370 

thus included in all modelling scenarios mentioned above. 371 

 372 

2.7. Above ground biomass mapping 373 

The optimal sensor (or sensor combination) and modelling scenario were chosen for 374 

the AGB mapping in both sites, where the R² was the highest and RMSE and SEP 375 

the lowest. The raster layers of the best model variables, including LAI, were 376 

resampled to the common spatial resolution and stacked for the RF mapping 377 
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procedure which was conducted in R statistical software using ‘raster’ and ‘rgdal’ 378 

packages. 379 

 380 

To assess differences between the wetlands and drylands, 50 random points were 381 

extracted for each class and used to extract AGB map values.  Plantations, crop 382 

fields, waterbodies and artificial wetlands were excluded to restrict the points to 383 

relevant classes, and each point were checked to ensure it doesn’t fall on any trees 384 

or inundated patches. Differences between the wetlands and drylands were 385 

assessed using a Shapiro-Wilk t-test and box plots in the R software (RStudio Inc. v. 386 

0.99.491, 2009-2015, R version 3.2.5. for x64bit). Coefficient of Variation (COV) was 387 

also calculated.  Differences are reported for each site individually for comparative 388 

purposes. 389 

 390 

3. Results 391 

3.1. Ability of sensors to estimate AGB of vegetated wetlands 392 

According to Table 4, when scrutinising the individual sensors (S1, S2 and WV3) 393 

performance alone, WV3 yielded the highest accuracies regardless of the 394 

incorporation of bands only, indices only or the combination of bands and indices. In 395 

general the optical sensors yielded higher modelling accuracies than the C-band 396 

SAR sensor but this is marginal when examining the obtained SEP values (<1% 397 

difference between S1 and S2 but ~6% for WV3, p value of R2 & RMSE < 0.05). The 398 

combination of indices/band ratios and reflectance/polarisations, however, provided 399 
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minimal benefits in modelling accuracies with the reflectance/polarisation bands 400 

contributing the most over the indices and band ratios. 401 

 402 

Table 4: Mean RF validation modelling results (of 100 bootstrapped iterations) for AGB prediction using bands, indices 403 
and its combinations of Sentinel-1 (S1), Sentinel-2 (S2) and WorldView-3 (WV3) datasets alone 404 

Scenarios 
S1 (SAR) S2 (optical) WV3 (high res. optical) 

R² RMSE  SEP R² RMSE SEP R² RMSE SEP 

Bands (Reflectance/Backscatter) 

Indices (NDVIs/Band ratios) 

Bands + Indices* 

*Top 10 most important variables (LAI included in all scenarios); RMSE is in g/m2 and SEP is in % 

 405 

When examining the results of Figure 3, WV3 achieves a marginally better fit than 406 

S2 with S1 showing the poorest fit (R2=0.51).  In relation to the 1:1 trend line across 407 

all sensors (A-C), WV3 illustrated a closer fit especially between the 0-400 g/m2 and 408 

around the 800 g/m2 AGB range.  All sensors, however, show signs of saturation 409 

from 700 g/m2 AGB value which is indicative of noticeable AGB underestimation.  410 

 411 
Figure 3: 100 Bootstrapped iterations, including accuracies, of observed versus predicted AGB density scatterplots 412 
derived from Sentinel-1 (A), Sentinel 2 (B) and WordView-3 (C) data only (dotted black line = 1:1 line). 413 

 414 

According to Table 5, combining S1 polarisation channels and S2 reflectance bands, 415 

in particular, yielded higher accuracies than the use of these individual sensors alone 416 

and was also equivalent to the performance of the high resolution WV3 sensor 417 
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results (no significant difference between these scenarios with a p value of R2 & 418 

RMSE > 0.05). Also the use of individual reflectance bands and polarisation 419 

channels generally yielded higher accuracies than the incorporation or use of VIs 420 

and band ratios with exception of the S1+S2 combination. The latter produced the 421 

best results and was used in creating the AGB maps. The LAI regional map, also 422 

required for the AGB map, was generated from the S2 dataset using the LAI 423 

PROSAIL RTM.  Also the combination of either the S1 or S2 data with the high 424 

spatial resolution WV3 data did not yield any significant improvements in modelling 425 

accuracies compared to the combined S1 and S2 modelling results (p value of R2 & 426 

RMSE > 0.05). 427 

 428 

Table 5: Mean RF validation modelling results (of 100 bootstrapped iterations) for AGB prediction using a combination 429 
of the sensors in question 430 

Scenarios S1 + S2 (SAR + optical) 
S1+WV3 (SAR + high 

res. optical) 
S2+WV3 (optical + high 

res. optical) 

R² RMSE SEP R² RMSE SEP R² RMSE SEP 

Bands (Reflectance/ 
Polarisations)* 

Indices (NDVIs/Band 
ratios)* 

Band + Indices* 

*Top 10 most important variables (LAI included in all scenarios); RMSE is in g/m2 and SEP is in % 

 431 

3.3 Predicted above ground biomass maps 432 

Both AGB maps (figure 4) illustrated the expected patterning of high and low AGB 433 

throughout the study areas. In Hogsback, intermediate AGB ranges (320-560 g/m2) 434 

were evident over the wetlands where stands of T. capensis, P. australis and C. 435 

acutiformis prevail (B-1). Lower AGB ranges (<320 g/m2) were prevalent over the 436 

seasonally to temporary seep wetlands along slopes and Afromontane grassland 437 

areas (B-2). Pastoral fields mostly fell within this AGB range as well. The 438 
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Tevredenpan study area illustrated generally higher AGB ranges over the dryland 439 

HGM type compared to the Hogsback area (320-400 g/m2 AGB range with less 440 

patches of AGB <240 g/m2). Agricultural pastoral fields had typically a high AGB 441 

range (400-560 g/m2) while similar ranges were found mostly along the valley-bottom 442 

wetlands (A-1). A few patches of high AGB (720-840 g/m2) was found along the 443 

channels in the southern Pearl channelled valley-bottom wetland where the Phr. 444 

australis and T. capensis species were particularly dense (A-2). Interestingly, a high 445 

AGB value range (400-720 g/m2) was also observed over the Tevredenpan, the very 446 

large depression in the south-western part of the study area, which consists of 447 

primarily floating P. australis in the centre surrounded by open water (A-3). 448 

(A) 449 

450 
  451 

A-1 

A-2 

A-3 
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(B)  452 

 453 

Figure 4: Above ground biomass (g/m
2
) estimated from the combination of the Sentinel 1 (SAR) and 2 (optical) sensors 454 

for (A) Tevredenpan and (B) Hogsback. 455 

 456 

3.4 Differences between wetland and dryland vegetation AGB 457 

The mean AGB of wetlands was significantly higher (p < 0.05) than the dryland 458 

vegetation for both the ground samples and the predicted maps in both study sites 459 

(Figure 5, Table 6). Additionally, both ground samples and the predicted maps in 460 

Hogsback and Tevredenpan indicated a significant difference at the 99 percentile 461 

interval (p > 0.001) between wetland and dryland AGB (Table 6).  462 

B-1 

B-2 
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 463 
Figure 5: Variation in AGB across drylands and wetlands for (A) ground samples of Tevredenpan (Dryland n = 6, wetland 464 
n = 26); (B) the ground samples of Hogsback (Dryland n = 21; wetland n = 9) (C) the predicted AGB for Trevedenpan 465 
(Dryland n = 20, wetland n = 200); and (D) predicted AGB for Hogsback (Dryland n = 50, wetland n = 200); Significant 466 
differences between wetlands and drylands (t-test) are indicated in the letters below the boxplots 467 

 468 

Table 6: Differences in AGB between wetlands and drylands (t-test, p < 0.05). The number of samples (n) is given for 469 
drylands, wetlands; df = degrees of freedom 470 

  Ground samples Predicted map 

  n     df p n          df p 

Tevredenpan 6, 26 29.5 0.0000134600000 50, 200 205.7 0.000000000004 

Hogsback 21, 9 20.1 0.0000000009209 50, 200 120.2 0.0000000000000 

 471 

Table 7: Statistics of predicted Above Ground Biomass (AGB) for drylands and wetland types of Tevredenpan and 472 
Hogsback 473 

Predicted 
(g/m2) 

Tevredenpan Hogsback 

Dryland Wetland Dryland Wetland 

Minimum 221.1 226.1 195.7 199.7 

Mean 315 404.83 256.8 331.85 

Maximum 421.3 823.2 356.5 605.9 

Standard 
Deviation 

52.9 38.16 42.1 10.97 
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COV 0.2 0.09 0.2 0.03 

 474 

Based on the predicted AGB values per vegetation type (Table 7), it is evident that 475 

the Tevredenpan study site has a greater range of wetland vegetation than the 476 

Hogsback study site.  These values range from a total range of 226.1 - 823.2 g/m2 in 477 

comparison to the range of the more sedge-dominated Hogsback study site of 199.7 478 

– 605.9 g/m2.  The Tevredenpan study site also possessed a slightly larger dryland 479 

AGB range with the mean values illustrating a difference of ~60 g/m2.  480 

 481 

3. Discussion 482 

This study evaluated the capabilities of the Sentinel (1A and 2A) and WorldView-3 483 

sensors for estimating herbaceous AGB, using Random Forest, in wetlands of two 484 

Afromontane study sites in the South African grassland biome. Additionally, the 485 

study sought to ascertain if there are significant differences in the AGB ranges 486 

between wetland vegetation and dryland vegetation types. Cost effective monitoring 487 

and quantification of AGB can improve the understanding of the functionality of plant 488 

material contribution to soil carbon sequestration at a regional scale in arid and semi-489 

arid regions.  490 

 491 

The modelling results indicated that the WV3 and Sentinel sensors can predict the 492 

AGB for two study areas and to the extent of dryland and wetland types. When the 493 

individual sensors were compared (WV3, S1 and S2), the WV3 sensor outperformed 494 

the other sensors attaining the highest coefficient of determination (R² = 0.63) and 495 

lowest RMSE and SEP (169.28 g/m2 and ~35% respectively) using the WV3 496 

individual bands in a RF model. WV offers a high spatial resolution (< 1m) and 497 
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although highly suited for modelling and monitoring AGB of wetlands in these arid to 498 

semi-arid grasslands, the images are expensive for regional monitoring. Using a 499 

combination of Sentinel SAR (S1) and optical (S2) with a spatial resolution of 20m 500 

(aggregated to the coarser S1 spatial resolution), comparative results were obtained 501 

using the individual bands and polarisations, attaining a coefficient of determination 502 

of R² = 0.63 and an RMSE of 169.68 g/m2 (SEP of ~ 36%) in a RF model. The 503 

combination of the SAR and optical Sentinel sensors improved the modelling 504 

performance over the use of the individual Sentinel sensors separately and were 505 

comparable with accuracies obtained from the higher spatial resolution but more 506 

expensive WV3 sensor.  Huang et al. (2016), though predicted wetland AGB 507 

including trees, also reported the benefit of integrating optical and SAR datasets. 508 

This is due to volumetric (from the SAR sensor) and surface reflectance (with no risk 509 

of saturation due to this study’s AGB range) information being complementary and 510 

when combined strengthened modelling performance.  This result supports the idea 511 

that wetland AGB can be suitably monitored with freely available satellite data albeit 512 

at a coarser spatial resolution.   513 

 514 

The intermediate modelling accuracies achieved in this study and the reliance on the 515 

integration of LAI in the modelling procedure, however, could be linked to the field 516 

sampling and data extraction protocol utilised in this study as in most cases, a single 517 

S1 pixel and S2 pixel could have been extracted over each of the sample plots (the 518 

field plots were smaller than the S1 and S2 pixels).  Within the limited number of S1 519 

and S2 pixels extracted, standing water and variable moisture presence between 520 

wetland and dryland vegetation communities could have contributed as a source of 521 

error in the modelling as both the S1 backscatter and S2 reflectance values would 522 
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have been affected. Mathieu et al., 2013, also, indicated that the use of a single pixel 523 

of Radarsat-2 backscatter in woody vegetation modelling yielded poorer results in 524 

comparison to more pixels aggregated from larger sampling windows. Additionally, 525 

GPS error of the ground field plots and orthorectification of the S2 product could 526 

have contributed to this error. Due to the heterogeneity of features (e.g. variable 527 

hydrogeomorphic features between fine channel networks) associated with smaller 528 

wetland systems, such as Hogsback and Tevredenpan, these sources of error would 529 

be expected especially when utilising sensors of a 10-20m spatial resolution.  In the 530 

modelling results, the use of spectral indices and band ratios, unlike in the case of 531 

Sibanda et al., 2017 and Mutanga et al., 2012, did not provide any improvements in 532 

modelling accuracies in comparison to the use of reflectance and polarisation bands 533 

alone.  The lack of tonal variations (i.e. similar reflection, emittance, transmission or 534 

absorption characteristics) between vegetation communities in these particular study 535 

areas may support this result (Sibanda et al., 2017) but further investigation is 536 

required.    537 

 538 

The predicted AGB maps with an AGB range between 168-845 g/m2, based on the 539 

integrated Sentinel 1A and 2A RF model, was comparable and within the expected 540 

range of other studies in palustrine wetlands of the grassland biome.  Matayaya et 541 

al., 2017 found several grass and sedge species associated with palustrine wetlands 542 

of temperate grasslands north of Harare, Zimbabwe, to range from 92-2092 g/m2 in 543 

undisturbed sites.  Li et al., 2017 documented a range of 122.31-1463.04 g/m2 within 544 

the temperate grassland study site in Inner Mongolia and Xie et al., 2009 obtained 545 

mean ranges of up to 147g/m2 in the same environment.   546 

 547 
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From the predicted maps, it was found that the predicted AGB values were 548 

significantly different between wetland and dryland species. The AGB ranges within 549 

these wetland and dryland vegetation types are controlled by the natural conditions 550 

of such features (i.e. permanently and seasonally inundated) and disturbances from 551 

the current land use practices (e.g. cattle grazing and fire). In the study area we 552 

observed grazing in the temporary to seasonal seeps and valley-bottom wetlands of 553 

both study areas, however seasonal saturation and inundation prohibits the 554 

movement of cattle through certain wetland types. Some wetland vegetation, such as 555 

the P. australis, T. capensis and C. acutiformis, are also not palatable, and hence 556 

are less grazed. Regarding fire impacts, Matayaya et al., 2017, suggested the 557 

presence of significantly lower AGB in areas where burning, clearing, clipping or 558 

conventional tillage was applied but the impacts of fire in our study area were not 559 

clearly visible. Thus, taking into account firstly the conditions of the hydroperiod and 560 

secondly the impacts of grazing and fire, our results indicate that wetlands would 561 

offer higher potential of maintaining expected ranges of AGB and carbon (i.e. higher) 562 

relative to the drylands or temporary to seasonal seeps.  563 

 564 

The estimation of AGB across dryland and wetland vegetation types can offer the 565 

potential to monitor the functionality as well as pressures on wetlands over time. 566 

Further studies should be done to determine the natural ranges (i.e. in the absence 567 

of disturbances) of AGB for the dryland and wetland types, across the hydroperiod, 568 

as a benchmark for functional intactness of wetlands in the landscape. It is also 569 

unclear whether grazing and fire regimes impact all systems and to which degree as 570 

the literature shows potential negative and positive impacts on soil nutrition, AGB 571 
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regrowth and species richness but ultimately, AGB is dependent on management 572 

regimes of the area (Truus, 2011; Matayaya et al 2017). 573 

 574 

4. Conclusion 575 

The paper assessed the capability of sensors to estimate above ground biomass 576 

(AGB) of wetland vegetation in the grassland biome of South Africa. The combined 577 

Sentinel SAR and optical sensors datasets achieved comparable results to the WV3 578 

sensor, while being affordable for regional monitoring. Though being comparable, 579 

WV3 still offers a greater spatial detail than the Sentinel sensors so the specific 580 

applications will still dictate which sensor to use. The predicted AGB maps also 581 

depicted an AGB range which was significantly different between wetland and 582 

dryland grasses types. Estimation of the AGB of wetland vegetation enables carbon 583 

sequestration studies and has the potential of monitoring functional intactness of 584 

wetlands in the landscape. 585 
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Acknowledgements 587 

This work was funded by the Water Research Commission (WRC) under the project 588 

K5/2545 “Establishing remote sensing toolkits for monitoring freshwater ecosystems 589 

under global change” as well as the Council for Scientific and Industrial Research 590 

(CSIR) by the project titled “Common Multi-Domain Development Platform (CMDP) 591 

to Realise National Value of the Sentinel Sensors for various land, freshwater and 592 

marine societal benefit areas”. Thanks go to Mr Lufuno Vhengani from the Meraka 593 

Institute at the Council for Scientific Research as well as Dr Clement Adjorlolo from 594 

the South African National Space Agency (SANSA) who has supported the team 595 



30 
 

with the download and atmospheric correction of the Sentinel-2A images. To all the 596 

land owners who graciously allowed access and assisted with local knowledge we 597 

are most grateful, as well as Mr Chris Everton, Plantation Manager of, as well as the 598 

land owners and the Amathole Forestry Company (Pty) Ltd for information on and 599 

access to their property. 600 

 601 

  602 



31 
 

5. References 603 

Amthor, J.S.; Dale, V.H.; Edwards, N.T.; Garten, C.T.; Gunderson, C.A.; Hanson, P.J.; Muston, M.A.; 604 

King, A.W.; Luxmoore, R.J.; McLaughlin, S.B.; Marland, G.; Muhlolland, P.J.; Norby, R.J.; O’Neill, R.V.; 605 

Post, W.M.; Shriner, D.S.; Rodd, D.E.; Tchaplinski, T.K.; Rurner, R.S.; Tuskan, G.A. and Wullschleger, 606 

S.D. 1998. Terrestrial ecosystem responses to global change: A research strategy, report, September 607 

1, 1998; Tennessee. (digital.library.unt.edu/ark:/67531/metadc706583/: accessed August 2, 2018), 608 

University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries 609 

Government Documents Department. 610 

Amundson, R. 2001. The carbon budget in soils. Annual Review of Earth and Planetary Science. Vol 611 

29; pp 535–562 612 

Adam, E.; Mutanga, O.; Rugege, D. 2010. Multispectral and hyperspectral remote sensing for 613 

identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management. 18; 614 

pp 281–296.  615 

Burgoyne, B.M.; Bredenkamp, G.J.; van Rooyen, N. 2000. Wetland vegetation in the North-eastern 616 

Sandy Highveld, Mpumalanga, South Africa. Bothalia. 30 (2); pp 187-200 617 

Cole, C.A. 2002. The assessment of herbaceous plant cover in wetlands as an indicator of function. 618 

Ecological Indicators, 2; pp 287 – 293. 619 

Darvishzadeh, R.; Skidmore, A.K.; Schlerf, M.; Atzberger, C. 2008. Inversion of a radiative transfer 620 

model for estimating vegetation LAI and chorophyll in a heterogeneous grassland. Remote Sensing 621 

of Environment. 112(5); pp 2592-2604 622 

Environmental Systems Research Institute (ESRI), 1999-2014 623 

Fan, L.; Gao, Y.; Brück, H.; Bernhofer, C.H. 2009. Investigating the relationship between NDVI and LAI 624 

in semi-arid grassland in Inner Mongolia using in-situ measurements. Theoretical and Applied 625 

Climatology. 95; pp-151-156 626 

Fourie, L.; Rouget, M.; Lötter, M. 2015. Landscape connectivity of the grassland biome in 627 

Mpumalanga, South Africa. Austral Ecology. 40; pp 67-76 628 

Gallant, A.L. 2015. The challenges of remote monitoring of wetlands. Remote Sensing. 7; pp 10938-629 

10950 630 

GeoTerraImage (GTI) Pty Ltd. 2015. The 2013-2014 South African National Land-Cover Dataset, 631 

2013-14 SA Landcover report-Contents vs 05 DEA open access. Data User Report and Metadata. 632 

Available: http://www.geoterraimage.com/downloads.php Accessed 17 September 2018. 633 

Goudie and Wells, 1995. The nature, distribution and formation of pans in arid zone. Earth-Science 634 

Reviews. 38(1); pp 1-69 635 

Grundling, P-L.; Linström, A.; Grobler, R.; and Engelbrecht, J. 2003. The Tevredenpan peatland 636 

complex of the Mpumalanga Lakes District. In: Couwenberg J and Joosten H (eds.) International Mire 637 

Conservation Group Newsletter Issue 2007/3. International Mire Conservation Group. 638 



32 
 

Huang, S.; Potter, C.; Crabtree, R.L.; Hager, S.; Gross, P. 2010. Fusing optical and radar data to 639 

estimate sagebrush, herbaceous, and bar ground cover in Yellowstone. Remote Sensing of 640 

Environment. 114; pp 251-264.  641 

Huang, C.; Ye, Z.; Deng, C.; Zhang, Z.; Wan, Z. 2016. Mapping Above-Ground Biomass by Integrating 642 

optical and SAR imagery: a case study of Xixi National Wetland Park, China. Remote sensing, 8, pp-1-643 

19 644 

Intergovernmental Panel on Climate Change (IPCC). 2013. Working Group I Contribution to the IPCC 645 

Fifth Assessment Report Climate Change 2013: The Physical Science Basis. Summary for Policy 646 

makers. , pp. 1-36 647 

Janks, M.R. 2014. Montane Wetlands of the South African Great Escarpment: Plant Communities and 648 

Environmental Drivers. MSc thesis. Grahamstown, South Africa Rhodes University. 649 

Jones, M.B. and Donnelly, A.; 2004. Carbon sequestration in temperate grassland ecosystems and 650 

the influence of management, climate and elevated CO2. New Phytologist, 164 (3); pp 423 – 439 651 

Kayranli, B. ; Scholz, M. ; Mustafa, Z. ; Hedmark, A. ; 2010. Carbon Storage and fluxes within 652 

freshwater wetlands : a critical review. Wetlands. 30 ; pp 111 - 124. 653 

Lal, R. 2008. Carbon sequestration. Philosophical Transactions of the Royal Society of Biological 654 

Science. 363 (1492); pp 815–830. 655 

Le Maitre, D.C.; Seyler, H.; Holland, M.; Smith-Adao, L.; Nel, J.L.; Maherry, A. and Witthüser. K. 2018. 656 

Identification, Delineation and Importance of the Strategic Water Source Areas of South Africa, 657 

Lesotho and Swaziland for Surface Water and Groundwater. Final Integrated Report on Project 658 

K5/2431, Water Research Commission, Pretoria. 659 

Lei, D.; Jingjuan, L.; Guazhuang, S. 2008. Neural network-based analytical model for biomass 660 

estimation in Poyang Lake wetland using ENVISAT ASAR data. The International Archives of the 661 

Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing 662 

2008; pp 1703 – 1708. 663 

Li, Z.; Yeh, A. G-O.; Wang, S.; Liu, J.; Liu, X.; Qian, J.; Chen, X. 2007. Regression and analytical models 664 

for estimating mangrove wetland biomass in South China using Radarsat images, International 665 

Journal of Remote Sensing, 28:24, 5567-5582. 666 

Liao, J.; Shen, G.; Dong, L. 2013. Biomass estimation of wetland vegetation in Poyang Lake area using 667 

ENVISAT advanced synthetic aperture radar. Journal of Applied Remote Sensing, 7, pp 1-15. 668 

Linström, A. 2015. Wetland Status Quo Report: Chrissiesmeer Project. Tevrede Pan Wetland W55A 669 

(Wetlands W55A - 05 to 07). SANBI; Pretoria, South Africa. 670 

MacKellar, N.; New, M.; Jack, C. 2014. Observed and modelled trends in rainfall and temperature for 671 

South Africa: 1960-2010. South African Journal of Science - Climate trends in South Africa. 110(7/8); 672 

pp 1-13 673 



33 
 

Masemola, C.; Cho, M.A.; Ramoelo, A. 2016. Comparison of Landsat 8 OLI and Landsat 7 ETM+ for 674 

estimating grassland LAI using model inversion and spectral indices: case study of Mpumalanga, 675 

South Africa. International Journal of Remote Sensing, 37(18); pp 4401-4419 676 

Matayaya, G.; Wita, M.; and Nyamadzawo, G.; 2017. Effects of different disturbance regimes on 677 

grass and herbacious plant diversity and biomass in Zimbabwean dambo systems. International 678 

Journal of Biodiversity Science, Ecosystem Services and Management, 13(1); pp 181-190. 679 

Mathieu, R.; Naidoo, L.; Cho, M.A.; Leblon, B.; Main, R.; Wessels, K.; Asner, G.P.; Buckley, J.; Van 680 

Aardt, J.; Erasmus, B.F.N.; Smit, I.P.J. 2013. Toward structural assessment of semi-arid African 681 

savannahs and woodlands: The potential of multitemporal polarimetric RADARSAT-2 fine beam 682 

images. Remote Sensing of Environment, 138; pp 215-231 683 

McDonald, J. H., 2008: Handbook of biological statistics. Baltimore: Sparky House Publishing. 684 

Middleton, B.J. and Bailey, A.K. 2008. Water resources of South Africa, 2005 Study (WR2005) and 685 

Book of Maps. WRC Research Reports No.TT381/08 & TT382/08.  686 

Mitsch, W.J. and Gosselink, J.G. 2015. Wetlands. 5th ed. Hoboken (NJ): John Wiley & Sons. 687 

Mpumalanga Tourism and Parks Agency (MTPA). 2014. Declaration of Chrissiesmeer Protected 688 

Environment in terms of the Matopma; Environmental Management: Protected Areas Act, 2003 (Act 689 

no 57 of 2003, as amended). Government Gazzette, 22 January 2014. 690 

Mucina, L. and Rutherford, M.C. (2006). The Vegetation of South Africa, Lesotho and Swaziland. 691 

Pretoria: South African National Biodiversity Institute (Strelizia) 692 

Mueller-Wilm, U. 2017. Sentinel 2 MPC – Sen2Cor Configuration and User Manual. European Space 693 

Agency (ESA); Issue 1; Date: 2018-03-22; pp 1-56 694 

Mutanga, O.; Adam, E.; Cho, M.A. 2012. High density biomass estimation for wetland vegetation 695 

using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied 696 

Earth Observation and Geoinformation. 18; pp 399-406 697 

Nahlik, A.M. and Fennessy, M.S. 2016. Carbon storage in US wetlands. Nature Communications. 7 698 

(13835); pp 1-9 699 

Ollis, D.J.; Ewart-Smith, J.L.; Day, J.A.; Job, N.M.; Macfarlane, D.M.; Snaddon, C.D.; Sieben, E.J.J.; Dini, 700 

J.A.; Mbona, N. 2015. The development of a classification system for inland aquatic ecosystems in 701 

South Africa. Water SA. 41(5); pp 727 – 745. 702 

Penuelas, J.; Gamon, J.A.; Griffin, K.L.; Field, C.B. 1993. Assessing community type, plant biomass, 703 

pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. 704 

Remote Sensing of Environment. 46; pp 110-118. 705 

Republic of South Africa (RSA). 1998. National Water Act (NWA), Act 36 of 1998. Government 706 

Printers: Pretoria, South Africa. 707 



34 
 

Poiani, K.A.; Johnson, W.C.; Kittel, T.G.F. 1995. Sensitivity of a prairie wetland to increased 708 

temperature and seasonal precipitation changes. Journal of the American Water Resources 709 

Association. 31(2); pp 283-294 710 

Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; van de Kerchove, R.; Kaszta, Z.; Wolff, E. 2015. 711 
Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using 712 
random forest modelling and WorldView-2 data. International Journal of Applied Earth Observation 713 
and Geoinformation. 43; pp 43-54 714 
 715 
Reid, H. and Huq, S. 2005. Climate change-biodiversity and livelihood impacts. Tropical Forests and 716 
Adaptation to Climate Change, p.57. https://books.google.co.za/books 717 
 718 
Sibanda, M.; Mutanga, O.; Rouget, M. 2015. Examining the potential of Sentinel-2 MSI spectral 719 
resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS Journal 720 
of Photogrammetry and Remote Sensing. 110; pp 55-65 721 
 722 
Sibanda, M.; Mutanga, O.; Rouget, M.; Kumar, L. 2017. Estimating biomass of native grass grown 723 
under complex management treatments using WorldView-3 spectral derivatives. Remote Sensing. 724 
9(55); pp 1-21 725 
 726 
Sieben, E.J.J.; Mtshali, H.; Janks, M. 2014. National Wetland Vegetation Database: Classification and 727 
Analysis of wetland vegetation types for conservation planning and monitoring. Water Research 728 
Commission (WRC) Report No. 1980/1/14. WRC, Pretoria, South Africa. 729 
 730 
Silva, T.S.F.; Costa, M.P.F.; Melack, J.M.; Novo, E.M.L.M. 2008. Remote sensing of aquatic vegetation 731 
theory and applications. Environmental Monitoring and Assessment. 140; pp 131-145  732 
 733 
Sun, R.; Yao, P; Wang, W.; Yue, B.; Liu, G. 2017. Assessment of wetland ecosystem health in the 734 
Yangtze and Amazon River Basins. ISPRS International Journal of Geo-Information. 6(81); pp 1-14 735 
 736 
Theuerkauf, S.J.; Puckett, B.J.; Theuerkauf, K.W.; Theuerkauf, E.J.; Eggleston, D.B. 2017. Density-737 
dependent role of an invasive marsh grass, Phragmites australis, on ecosystem service provision. 738 
PLOS One. 12(2); pp 1-16 739 
 740 
Truus L. 2011. Estimation of above ground biomass of wetland, biomass of wetland. In: Atazadeh I, 741 
edited. Biomass and Remote Sensing of Biomass. Shanghai: InTech; pp 75–86.  742 
 743 
Turner, D.P.; Ollinger, S.V.; Kimball, J.S. 2004. Integrating remote sensing and ecosystem process 744 

models for landscape- to regional-scale analysis of the carbon cycle. BioScience. 54(6); pp 573-584 745 

 746 
Ye, Y.; Zhou, C.; Sun, Y.; Zhou, D. 2010. Estimation of wetland aboveground biomass based on SAR 747 

Image: A case study of Honghe National Natural Reserve in Heilongjiang, China. 2010 18th 748 

International Conference on Geoinformatics, Beijing, China. 18-20 June 2010 (ISBN: 978-1-4244-749 

7303-8)  750 

Van Deventer, H.; Van Niekerk, L.; Adams, J.; Dinala, M.K.; Gangat, R.; Lamberth, S.J.; Lötter, M.; 751 

Mbona, N.; MacKay, F.; Nel, J.L.; Ramjukadh, C-L.; Skowno, A.; Weerts, S.P. submitted. National 752 

Wetland Map 5 – improving the spatial extent and representation of inland aquatic and estuarine 753 

ecosystems in South Africa. 754 



35 
 

Van Wijk, M.T.; Williams, M. 2005. Optical instruments for measuring leaf area index in low 755 

vegetation: application in artic ecosystems. Ecological Applications. 15(4); pp 1462-1470 756 

Van Wilgen, N.J.; Goodall, V.; Holness, S.; Chown, S.L.; McGeoch, M.A. 2016. Rising temperatures 757 

and changing rainfall patterns in South Africa’s national parks. International Journal of Climatology. 758 

36(2); pp 706-721 759 

 760 
Villa, J.A. and Mitch, W.J. 2015. Carbon sequestration in different wetland plant communities in the 761 

Big Cypress Swamp region of southwest Florida. International Journal of Biodiversity Science, 762 

Ecosystem Services & Management. 11(1); pp 17-28 763 

 764 
Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. 2009. A comparison of two models with Landsat data for 765 

estimating above ground grassland biomass in Inner Mongolia, China. Ecological Modelling, 220 (15), 766 

pp 1810-1818 767 

 768 
Zedler, J.B. and Kercher, S. 2005. Wetland resources: status, trends, ecosystem services, and 769 

restorability. Annual Review of Environment and Resources. 30(1); pp 39-74 770 

 771 


