
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2018 IEEE

Multi-path Load Balancing for SDN Data Plane

M.C. Nkosi, A.A. Lysko, S. Dlamini

CSIR Meraka Institute, Council for

Scientific and Industrial Research

P.O. Box 395

Pretoria 0001, South Africa
{mnkosi2, alysko}@csir.co.za

Abstract— Networks have become an important feature of

our day-to-day to life and therefore, user experience is an

imperative goal to be achieved by network operators. Load

balancing is a method of improving network performance,

availability, minimizing delays and avoiding network

congestion. In this paper, we study dynamic load balancing to

improve network performance and reduce network response

time. The load balancer is applied to OpenFlow SDN network’s

data plane with Opendaylight as the controller. The flexibility

of the load balancer is tested by using it on two different

network topologies. Results show that the load balancer can

improve the overall performance of the network and reduce

delay. The main contribution of this work is a load balancing

mechanism for SDN centralized controller environments which

can be employed at any point in time in a network, for

example, before network failure or after link failure, to avoid

data plane congestion and link overloading.

Keywords—SDN, OpenFlow, Data Plane, Controller, Load

balancing

I. INTRODUCTION

 Software Defined Networking (SDN) is a key enabling

networking paradigm for 5G communications which

promises to simplify network management, reduce

operational costs, reduce network resource utilization, and

stimulate innovation of new services and network evolution

[1]. The core function of SDN is to separate the control

plane from the data plane by bringing about network control

functions based on an abstract representation of the network.

The network functions are implemented by removing control

decisions, such as routing, from hardware devices and

enabling programmable flow tables in the hardware using a

standardized protocol, such as OpenFlow (OF). The network

abstraction is achieved through the use of a logically

centralized SDN controller which defines the behavior of the

data plane. When a new flow is initiated in the data plane

and there is no routing policy that exists within the flow

table, the forwarding device sends the first packet of that

flow to the controller. The controller then defines the

relevant forwarding route for that flow. One forwarding

policy is usually defined for each flow. Two or more

forwarding policies maybe defined for a single flow only for

backup purposes. Therefore, there are too many packets

using a particular flow, that flow may experience

overloading and cause delays and the overall network

efficiency. Thus, the ever increasing volume of network

traffic requires efficient traffic engineering and management

methods to ensure availability, scalability and reliability of

network.

 Load balancing is a method of managing incoming traffic

by distributing and sharing the load fairly among available

network resources to improve network availability, to reduce

latency and bandwidth utilization. In legacy networks, a load

balancer is a device designed on a particular hardware [2].

The load balancers are costly and differ based on vendor. In

SDN, load balancers are program codes which can easily be

implemented on the SDN controller to efficiently manage

network load. Most SDN controllers, such as, for example,

Onos, Ryu, Pox, floodlight, come with built in static network

load balancers with predefined load balancing policies such

as, for example, Round Robin, and Random. Mostly, the load

balancing in SDN controller is implemented using two

approaches, namely, the stateless and the state-full load

balancing [3]–[4]. In stateless approach, a controller does not

monitor the state of the network and will only load balance

traffic at a particular predefined time. This method works

well when traffic demands are known in advance. In state-

full approach, the controller keeps track of the state of the

network and performs load balancing as required. Although

state-full approach is preferred, it is expensive because the

controller should maintain per-flow states for flow table [5].

This may sometimes lead to controller over loading, which

may ultimately cause network unavailability and delays.

 In this paper, a dynamic flow load balancer is used to

define alternative flows for a flow and then traffic load

traversing a flow is shared equally among alternative flows.

Load balancing is performed as required to relive the

controller from maintaining per-flow states table.

Opendaylight is used as the centralized SDN controller. In

particular, the objective of this work is to compare the

performance of Opendaylight built in load balancer, which

is based on round robin and random policies, with a dynamic

load balancer. The dynamic load balancer uses Dijkstra

algorithm to calculate shortest alternative routes for each

flow and balances traffic amongst the defined alternative

flows. The flexibility of the load balancer is tested by using

different network two different topologies. Mininet

emulation tool is used to simulate network topologies, iperf

is used to generate traffic load and Wireshark is used monitor

the performance of the emulated network.

 The rest of the paper is organized as follows. Section two

provides related work. Section three presents system setup

and methodology. Section four describes results. Section five

concludes this paper.

II. RELATED WORK

SDNs, by their nature, accumulate a lot of control traffic
due to control plane operations and signaling events that

must be addressed efficiently to ensure effective and resilient
networks.vWithout efficient management methods, the
control traffic may overwhelm the controller, more
particularly in a centralized controller network, and cause
delay and loss of information [1],[6]. Work focusing on
control plane operations management where controller traffic
load balancing is addressed to ensure efficient SDN control
plane operation, is discussed in [6]-[7]. Proper management
of data plane traffic can relief controller from suffering from
overloading. Existing works focus on data plane load
balancing to address load balancing after network failures
such as link failure, switch failure and less on dynamic load
balancing helpful in avoiding network delays and traffic
congestion [8]-[9].vWang et al. proposed a path load
balancing mechanism which balances traffic after link failure
in the data plane [8]. Adami et al, [9], introduced a class-
based traffic recovery load balancing method to ensure
resilient network. In addition, several recent studies have
focused on dynamic load balancing in the data plane from
various perspectives [4],[10]-[11].vKhan et. al, studied
dynamic load balancing based on traffic volume by
monitoring link usage and load balancing traffic among
available links to avoid link over loading [4].vIn their
method, Floodlight was used as a centralized controller.
Gupta et. al studied flow statistics based load balancing using
POX controller [10]. In their method, load balancing is
performed to avoid server overloading by fairly sharing
server connection requests among multiple servers. Mallik et.
al, introduced a multi-path congestion control with load
balancing to try to protect network from congestions caused
by load spikes [11].

All these studies concern load balancing in the data plane
using Floodlight or POX as the SDN controller. Different
from the existing solutions, we investigate the performance
of multipath-based load balancing in a single centralized
Opendaylight controller’s data plane. The multi-path
dynamic load balancing method defines alternative paths for
a flow and shares a flow’s load among the alternatives paths.

III. SYSTEM SETUP AND METHODOLOGY

 Software defined networks (SDNs) consist of a
controller and a set of OpenFlow switches. Whenever a new
traffic flow request enters a switch, the switch sends a
routing request to the controller. After receiving the request
message, the controller calculates an optimal path and
configures routing tables in all the switches along the optimal
path. As shown in Fig. 1, each switch consists of a group
table and a set of flow tables with associated action set.

A flow table is made up of flow entries which are flow
routes for each source and destination pair. Thus, a single

Fig. 1: typical components of an OpenFlow switch

Flow is defined for each source destination pair and all
traffic for each pair will use the same route irrespective of
how much congested that flow is.

In this study, two scenarios with different network
topologies are considered. As depicted in Fig. 2, the first
scenario is made up of a network with 7 OpenFlow-switches
(OF-switches) and 8 hosts. The second scenario, as shown in
Fig. 3, is a bigger network with 40 switches and 81 hosts.
The two scenarios were chosen to test the performance,
scalability and flexibility of the proposed load balancing
method.

Nitrogen version of the open source Opendaylight SDN
controller was used as the centralized controller in both the
scenarios. Opendaylight is developed by Linux foundation
to promote SDN. It is modular, scalable and supports a
variety of southbound interfaces such as, other than
OpenFlow, the broadband gateway protocol, OVSDB and
many others[12]-[13]. Karaf Dlux features [14] were used to
monitor the topologies, nodes and controller-switch
communications.

Mininet SDN emulation tool was used to emulate the
network topologies. Mininet uses a single kernel to run the
emulated topologies and employs Open Virtual Switch
(OvSwitch) as the default OpenFlow switch[15] . OpenFlow
version 1.3 was used because it is still the most supported
version in SDN hardware switches.

A source-destination pair was identified in each topology
and pings were performed to generate congestion between
the source and destination pair. Irrespective of how much the
path link flow is congested, new incoming traffic of same
source-destination pair is queued on one same data flow
path. This at times, may cause delay and ultimately loss of
information. To avoid this problem, multi-flow load
balancing method was used.

The multi-flow load balancing method calculates
alternative short paths which are pushed down into the flow
table. A traffic load for a single flow was shared fairly
among the alternative flows. The load balancing algorithm
takes source and destination pair as an input. The algorithm
extracts network topology using JSON and REST APIs and
performs link, port, MAC, and IP mappings together with
switch and port connections. The algorithm also extracts
ports transmission rates statistics to understand the load on
each port for each flow. Possible best alternative paths are
chosen based on lowest flow cost. Flow cost is calculated as
the sum of number of transmitted and received packets at
that particular time. PC with Linux Ubuntu 18.04 with 8GB
RAM and 2.7GHz processing speed was used to implement
this study. IPerf was used to create TCP data streams and to
measure the throughput of the data flow before load
balancing and after load balancing.

In a nutshell, the following is the step by step
implementation methodology for our study for each topology
scenario:

 Emulate a network topology using mininet and run
mininet ping all to ensure that nodes and links are up
and running.

 Identify data flow path for a source destination pair.

 Verify that the path is indeed used for transmission for
the source-destination pair using Wireshark.

 h1
h8

OF-switch 2

OF-switch 3 OF-switch 6OF-switch 4
OF-switch 7

h2
 h3 h4 h5 h6 h7

OF-switch 1 OF-switch 5

 Fig. 2: network topology for scenario 1

OF-switch 6

OF-switch 7
OF-switch 8

OF-switch 5

OF-switch 2

OF-switch 3
OF-switch 4

OF-switch 1

OF-switch 10

OF-switch 11
OF-switch 12

OF-switch 9

OF-switch 14

OF-switch 15
OF-switch 16

OF-switch 13

OF-switch 18

OF-switch 19
OF-switch 20

OF-switch 17

OF-switch 37

OF-switch 38
OF-switch 40

OF-switch 22

OF-switch 23
OF-switch 24

OF-switch 21

OF-switch 30

OF-switch 31
OF-switch 32

OF-switch 29

OF-switch 26

OF-switch 27
OF-switch 28

OF-switch 25

OF-switch 39

h79-h81

h4 -h6

h7 -h9 h10 -h12

h13 -h15

h16 -h18

h22 -h24 h25 -h27
h19 -h21 h28 -h30

h31 -h33
h34 -h36

h37 -h39

h40 -h42
h43 -h45

h46 -h48

h49 -h51
h52 -h54

h55 -h57

h61 -h63h58 -h60

h69 -h71
h66 -h68

h64 -h65h76 -h78

h72 -h75

h1-h3

OF-switch 34

OF-switch 35
OF-switch 36

OF-switch 33

 Fig. 3: network topology for scenario 2

 Create a ping on the source-destination pair to
generate traffic and flow congestion.

 Perform an iperf and another ping to measure the
latency and bandwidth utilization on the over loaded
flow. The ping is performed for 10 packets each with
packet size 10240 MB. The iperf test was performed
using default TCP window frames of size 85.3
KByte with time interval of 15 sec.

 Perform load balancing on the congested source-
destination pair (i.e. data path flow)

 Perform an iperf and ping again on the source-
destination pair to measure the performance of the
load balancing.

Results for both scenarios based on the methodology are
highlighted in the next section.

IV. RESULTS AND DISCUSSIONS

A. Scenario 1

As shown in Fig. 2, scenario 1 was made of a smaller
network with a total of seven switches and eight hosts. A
mininet ping all was performed to ensure 100% reachability.
H1-h8 was chosen as the source-destination pair. Using
Dijkstra’s shortest path method, it was calculated that the
best path for the pair is [S3-S2-S1-S5-S7]. It was also
verified using Wireshark that transmission for the pair use
the flow route [S3-S2-S1-S5-S7]. Using mininet xterm, a
ping was performed for h1-h8 (i.e., on xterm h1, ping
10.0.0.8 (h1’s IP address), and on xterm h8, ping
10.0.0.1(h1’s IP address)). After congesting the best path for
the source-destination pair, that is the flow [S3-S2-S1-S5-
S7], another ping and an iperf with h1 as the client and h8 as
the server, were performed to measure bandwidth utilization
on the flow before load balancing. The ping results are
shown in Fig. 4 and the iperf results are shown in Fig 5.

Load balancing was performed for the source-destination
pair. The load balancing algorithm first computes all the flow
paths for h1-h8 pair. The following was defined as the paths
for the pair h1-h8: [S3-S2-S4-S1-S7], [S3-S2-S1-S5-S7].
The algorithm then computes path costs for all the defined
paths by using network statistics. The path cost is calculated
as: Cost= Tx +Rx where Tx is number of transmitted
packets and Rx is number of received packed. The costs for
the defined paths were calculated as [S3-S2-S4-S1-S7:0],
[S3-S2-S1-S5-S7:8]. The path with lowest cost was chosen
as the shortest path flow. That is to say [S3-S2-S4-S1-S7:1]
was chosen and was pushed down to flow routing table as
the flow to be used. Load balancing is repeated until path
cost for all paths are equal (that is all paths will have same
load).

Ping and iperf tests were performed after load balancing
to measure bandwidth utilization after the ping. Results are
shown in Fig 4 and Fig 5 respectively.

B. Scenario 2

As shown in Fig. 3, scenario 2 was made of bigger
network with a total of 40 switches and 81 hosts. Same
process as described in section iv.A, was followed for
scenario 2. The h7-h54 source-destination pair was used with
the path flow [S5-S37-S39-S40-S25] as the defined default
flow by Opendaylight controller. Ping and iperf results are
shown in Fig. 6 and Fig. 7 respectively.

For load balancing, the following were defined as the
possible path flow with associated costs:

 [S5-S37-S39-S40-S25: 4]; [S5-S37-S38-S40-S25:0];

[S5-S37-S38-S39-S40-S25:0];[S5-S37-S39-S38-S40-
S25:0].

Path [S5-S37-S38-S40-S25] was chosen as the new path
and load balancing was repeated until load was fairly
distributed among the alternative path flows. Ping and iperf
results are also shown in Fig. 6 and Fig. 7 respectively.

0
1
2
3
4
5
6
7
8
9

10

MIN AVG MAX MDEV

Time in ms

average ping for 10 packets of size 10240 byte

Scenario 1: Ping results

Before Load Balancnig

After load balancing

 Fig. 4: Scenario 1 ping results for source-destination pair: h1-h8

0

1

2

3

4

5

6

7

Transfer(GBytes) Bandwidth(Mbits/sec)

G
B

 v
s.

 M
B

it
s/

se
c

average iperf for time interval of 15sec

Scenario 1: Iperf results

Before Load balanacing

After load balalncing

 Fig. 5: Scenario 1 Iperf results for source destination pair: h1-h8

For load balancing, the following were defined as the
possible path flow with associated costs:

 [S5-S37-S39-S40-S25: 4]; [S5-S37-S38-S40-S25:0];

[S5-S37-S38-S39-S40-S25:0]; [S5-S37-S39-S38-S40-
S25:0].Path [S5-S37-S38-S40-S25] was chosen as the new
path and load balancing was repeated until load was fairly
distributed among the alternative path flows. Ping and iperf
results are also shown in Fig. 6 and Fig. 7 respectively.

C. Discussions

As it can be observed from the results of scenario 1, the
maximum average ping after load balancing is 4.9m/s as
compared to that of before load balancing which is 10m/s.
The iperf results show an increase of about 2.2GB in data
transfer after load balancing. However, the increase is not as
significant as expected. This is assumed to be due to the fact
that part of the alternative path routing path uses some link

from the congested path. Notice that, the first links in both
paths are the same: [S3-S2-S1-S5-S7] [S3-S2-S1-S5-S7].
From scenario 2, it can be observed that the increase is
significant in data transfer, from about 4GB to 10 GB.

This is because, unlike, in scenario 1, there are multiple
different routing paths that the load balancer can use to
transfer data. Therefore, the load balancer works much
quicker when there are more options in alternative paths.

From scenario 1 and 2, it can be concluded that the load
balancer is flexible for both smaller networks and larger
networks. It also can improve network performance and
avoid overall network delay.

0

1

2

3

4

5

6

7

8

9

10

MIN AVG MAX MDEV

Ti
m

e
in

 m
s

Average ping for 10 packets of size 10240 Byte

Scenario 2:Ping results

Before Load balancing

After Load Balancing

 Fig. 6: Scenario 2 ping results for source-destination pair: h7-h54

0

1

2

3

4

5

6

7

Transfer(GBytes) Bandwidth(Mbits/sec)

G
B

 v
s.

 M
B

/s
ec

average iperf for time interval of 15sec

Scenario 2: Iperf results

Before Load balanacing

After load balalncing

 Fig. 7: Scenario 2 Iperf results for source destination pair: h7-h54

V. CONCLUSION

We have performed load balancing for both larger and
smaller networks using a dynamic multi-path load balancer
in an OpenFlow based SDN data plane. The load balancer
determines alternative paths first and then reroute traffic
equally amongst the defined paths. The network topologies
were emulated using mininet emulation tool. The network
uses SDN Opendaylight controller which uses built in load
balancer based on round robin and random policies. The
performance of the built in load balancer was compared to
the multi-path load balancer method. The load balancer has
improved the overall network performance in transfer rate
and response time. However, it was found that for better
network improvement, the data plane should have multiple
alternative links so that multiple path paths can be defined
for a routing path. The overall contribution of this work is a
multi-path load balancing method, which, unlike other load
balancing method, can be applied to a network at any state(
before date plane failure, or after data plane failure), to
ensure network efficiency.

REFERENCES

[1] G. Bianchi, A. Capone, M. Bonola, G. Bianchi, and M. Bonola,
“Public Review for OpenState : Programming Platform-independent
Stateful OpenFlow Applications Inside the Switch a c m s i g c o m m
OpenState : Programming Platform-independent Stateful OpenFlow
Applications Inside the Switch,” vol. 44, no. 2, pp. 44–51, 2014.

[2] W. K. Soo, T.-C. Ling, A. H. Maw, and S. T. Win, “Survey on load-
balancing methods in 802.11 infrastructure mode wireless networks
for improving quality of service,” ACM Comput. Surv., vol. 51, no. 2,
2018

[3] S. Bhandarkar and K. A. Khan, “Load Balancing in Software-defined
Network (SDN) Based on Traffic Volume,” vol. 2, no. 7, pp. 72–76,
2015

[4] “US9621642B2 - Methods of foMethods of forwarding data packets
using transient tables and related load balancers.”

[5] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, 2013.

[6] T. Kim, S. G. Choi, J. Myung, and C. G. Lim, “Load balancing on
distributed datastore in opendaylight SDN controller cluster,” 2017
IEEE Conf. Netw. Softwarization Softwarization Sustain. a Hyper-
Connected World en Route to 5G, NetSoft 2017, 2017

[7] J. Li, X. Chang, Y. Ren, Z. Zhang, and G. Wang, “An effective path
load balancing mechanism based on SDN,” Proc. - 2014 IEEE 13th
Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2014, pp. 527–
533, 2015

[8] D. Adami, S. Giordano, M. Pagano, and N. Santinelli, “Class-based
traffic recovery with load balancing in software-defined networks,”
2014 IEEE Globecom Work. GC Wkshps 2014, pp. 161–165, 2014.

[9] K. Kaur, S. Kaur, and V. Gupta, “Flow statistics based load balancing
in OpenFlow,” 2016 Int. Conf. Adv. Comput. Commun. Informatics,
pp. 378–381, 2016

[10] A. Mallik and S. Hegde, “A novel proposal to effectively combine
multipath data forwarding for data center networks with congestion
control and load balancing using Software-Defined Networking
Approach,” 2014 Int. Conf. Recent Trends Inf. Technol. ICRTIT 2014,
2014

[11] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of
OpenDaylight SDN controller,” Proc. Int. Conf. Parallel Distrib.
Syst. - ICPADS, vol. 2015–April, pp. 671–676, 2014.

[12] P. Berde et al., “Facilitation of the OpenDaylight Architecture,” Proc.
third Work. Hot Top. Softw. Defin. Netw. - HotSDN ’14, pp. 1–6,
2014.

[13] S. Badotra, “Open Daylight as a Controller for Software Defined
Networking,” vol. 8, no. 5, pp. 1105–1111, 2017.

[14] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based
emulation,” Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol. - Conex.
’12, p. 253, 2012.

[15] S. Badotra, “Open Daylight as a Controller for Software Defined
Networking,” vol. 8, no. 5, pp. 1105–1111, 2017.

