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Abstract— Networks have become an important feature of 

our day-to-day to life and therefore, user experience is an 

imperative goal to be achieved by network operators. Load 

balancing is a method of improving network performance, 

availability, minimizing delays and avoiding network 

congestion. In this paper, we study dynamic load balancing to 

improve network performance and reduce network response 

time. The load balancer is applied to OpenFlow SDN network’s 

data plane with Opendaylight as the controller. The flexibility 

of the load balancer is tested by using it on two different 

network topologies. Results show that the load balancer can 

improve the overall performance of the network and reduce 

delay. The main contribution of this work is a load balancing 

mechanism for SDN centralized controller environments which 

can be employed at any point in time in a network, for 

example, before network failure or after link failure, to avoid 

data plane congestion and link overloading.    

Keywords—SDN, OpenFlow, Data Plane, Controller, Load 

balancing 

I. INTRODUCTION  

     Software Defined Networking (SDN) is a key enabling 

networking paradigm for 5G communications which 

promises to simplify network management, reduce 

operational costs, reduce network resource utilization, and 

stimulate innovation of new services and network evolution 

[1].   The core function of SDN is to separate the control 

plane from the data plane by bringing about network control 

functions based on an abstract representation of the network.  

The network functions are implemented by removing control 

decisions, such as routing, from hardware devices and 

enabling programmable flow tables in the hardware using a 

standardized protocol, such as OpenFlow (OF). The network 

abstraction is achieved through the use of a logically 

centralized SDN controller which defines the behavior of the 

data plane.   When a new flow is initiated in the data plane 

and there is no routing policy that exists within the flow 

table, the forwarding device sends the first packet of that 

flow to the controller. The controller then defines the 

relevant forwarding route for that flow. One forwarding 

policy is usually defined for each flow. Two or more 

forwarding policies maybe defined for a single flow only for 

backup purposes. Therefore, there are too many packets 

using a particular flow, that flow may experience 

overloading and cause delays and the overall network 

efficiency. Thus, the ever increasing volume of network 

traffic requires efficient traffic engineering and management 

methods to ensure availability, scalability and reliability of 

network.  

    Load balancing is a method of managing incoming traffic 

by distributing and sharing the load fairly among available 

network resources to improve network availability, to reduce 

latency and bandwidth utilization. In legacy networks, a load 

balancer is a device designed on a particular hardware [2]. 

The load balancers are costly and differ based on vendor. In 

SDN, load balancers are program codes which can easily be 

implemented on the SDN controller to efficiently manage 

network load.  Most SDN controllers, such as, for example, 

Onos, Ryu, Pox, floodlight, come with built in static network 

load balancers with predefined load balancing policies such 

as, for example, Round Robin, and Random. Mostly, the load 

balancing in SDN controller is implemented using two 

approaches, namely, the stateless and the state-full load 

balancing [3]–[4]. In stateless approach, a controller does not 

monitor the state of the network and will only load balance 

traffic at a particular predefined time. This method works 

well when traffic demands are known in advance.  In state-

full approach, the controller keeps track of the state of the 

network and performs load balancing as required. Although 

state-full approach is preferred, it is expensive because the 

controller should maintain per-flow states for flow table [5]. 

This may sometimes lead to controller over loading, which 

may ultimately cause network unavailability and delays.  

     In this paper, a dynamic flow load balancer is used to 

define alternative flows for a flow and then traffic load 

traversing a flow is shared equally among alternative flows. 

Load balancing is performed as required to relive the 

controller from maintaining per-flow states table.  

Opendaylight is used as the centralized SDN controller.  In 

particular, the objective of this work is to compare the 

performance of Opendaylight built in load balancer,   which 

is based on round robin and random policies, with a dynamic 

load balancer.  The dynamic load balancer uses Dijkstra 

algorithm to calculate shortest alternative routes for each 

flow and balances traffic amongst the defined alternative 

flows.  The flexibility of the load balancer is tested by using 

different network two different topologies. Mininet 

emulation tool is used to simulate network topologies, iperf 

is used to generate traffic load and Wireshark is used monitor 

the performance of the emulated network.  

    The rest of the paper is organized as follows. Section two 

provides related work. Section three presents system setup 

and methodology. Section four describes results. Section five 

concludes this paper. 

 

II. RELATED WORK  

SDNs, by their nature, accumulate a lot of control traffic 
due to control plane operations and signaling events that 



must be addressed efficiently to ensure effective and resilient 
networks.vWithout efficient management methods, the 
control traffic may overwhelm the controller, more 
particularly in a centralized controller network, and cause 
delay and loss of information [1],[6]. Work focusing on 
control plane operations management where controller traffic 
load balancing is addressed to ensure efficient SDN control 
plane operation, is discussed in [6]-[7]. Proper management 
of data plane traffic can relief controller from suffering from 
overloading. Existing works focus on data plane load 
balancing to address load balancing after network failures 
such as link failure, switch failure and less on dynamic load 
balancing helpful in avoiding network delays and traffic 
congestion [8]-[9].vWang et al. proposed a path load 
balancing mechanism which balances traffic after link failure 
in the data plane [8]. Adami et al, [9], introduced a class-
based traffic recovery load balancing method to ensure 
resilient network. In addition, several recent studies have 
focused on dynamic load balancing in the data plane from 
various perspectives [4],[10]-[11].vKhan et. al, studied 
dynamic load balancing based on traffic volume by 
monitoring link usage and load balancing traffic among 
available links to avoid link over loading [4].vIn their 
method, Floodlight was used as a centralized controller. 
Gupta et. al studied flow statistics based load balancing using 
POX controller [10]. In their method, load balancing is 
performed to avoid server overloading by fairly sharing 
server connection requests among multiple servers. Mallik et. 
al, introduced a multi-path congestion control with load 
balancing to try to protect network from congestions caused 
by load spikes [11]. 

All these studies concern load balancing in the data plane 
using Floodlight or POX as the SDN controller. Different 
from the existing solutions, we investigate the performance 
of multipath-based load balancing in a single centralized 
Opendaylight controller’s data plane. The multi-path 
dynamic load balancing method defines alternative paths for 
a flow and shares a flow’s load among the alternatives paths.   

III. SYSTEM SETUP AND METHODOLOGY  

 Software defined networks (SDNs) consist of a 
controller and a set of OpenFlow switches. Whenever a new 
traffic flow request enters a switch, the switch sends a 
routing request to the controller. After receiving the request 
message, the controller calculates an optimal path and 
configures routing tables in all the switches along the optimal 
path. As shown in Fig. 1, each switch consists of a group 
table and a set of flow tables with associated action set.  

A flow table is made up of flow entries which are flow 
routes for each source and destination pair. Thus, a single 

 

Fig. 1: typical components of an OpenFlow switch 

 

Flow is defined for each source destination pair and all 
traffic for each pair will use the same route irrespective of 
how much congested that flow is.  

In this study, two scenarios with different network 
topologies are considered. As depicted in Fig. 2, the first 
scenario is made up of a  network with 7 OpenFlow-switches 
(OF-switches) and 8 hosts. The second scenario, as shown in 
Fig. 3, is a bigger network with 40 switches and 81 hosts. 
The two scenarios were chosen to test the performance, 
scalability and flexibility of the proposed load balancing 
method.  

Nitrogen version of the open source Opendaylight SDN 
controller was used as the centralized controller in both the 
scenarios.   Opendaylight is developed by Linux foundation 
to promote SDN. It is modular, scalable and supports a 
variety of southbound interfaces such as, other than 
OpenFlow, the broadband gateway protocol, OVSDB and 
many others[12]-[13]. Karaf Dlux features [14] were used to 
monitor the topologies, nodes and controller-switch 
communications.  

Mininet SDN emulation tool was used to emulate the 
network topologies. Mininet uses a single kernel to run the 
emulated topologies and employs Open Virtual Switch 
(OvSwitch) as the default OpenFlow switch[15] . OpenFlow 
version 1.3 was used because it is still the most supported 
version in SDN hardware switches.  

A source-destination pair was identified in each topology 
and pings were performed to generate congestion between 
the source and destination pair. Irrespective of how much the 
path link flow is congested, new incoming traffic of same 
source-destination pair is queued on one same data flow 
path. This at times, may cause delay and ultimately loss of 
information. To avoid this problem, multi-flow load 
balancing method was used. 

The multi-flow load balancing method calculates 
alternative short paths which are pushed down into the flow 
table. A traffic load for a single flow was shared fairly 
among the alternative flows. The load balancing algorithm 
takes source and destination pair as an input. The algorithm 
extracts network topology using JSON and REST APIs and 
performs link, port, MAC, and IP mappings together with 
switch and port connections. The algorithm also extracts 
ports transmission rates statistics to understand the load on 
each port for each flow. Possible best alternative paths are 
chosen based on lowest flow cost. Flow cost is calculated as 
the sum of number of transmitted and received packets at 
that particular time. PC with Linux Ubuntu 18.04 with 8GB 
RAM and 2.7GHz processing speed was used to implement 
this study. IPerf was used to create TCP data streams and to 
measure the throughput of the data flow before load 
balancing and after load balancing.   

In a nutshell, the following is the step by step 
implementation methodology for our study for each topology 
scenario: 

 Emulate a network topology using mininet and run 
mininet ping all to ensure that nodes and links are up 
and running. 

 Identify data flow path for a source destination pair. 

 Verify that the path is indeed used for transmission for 
the source-destination pair using Wireshark. 
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 Fig. 2: network topology for scenario 1  
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 Fig. 3: network topology for scenario 2 

 Create a ping on the source-destination pair to 
generate traffic and flow congestion. 

 Perform an iperf and another ping to measure the 
latency and bandwidth utilization on the over loaded 
flow. The ping is performed for 10 packets each with 
packet size 10240 MB. The iperf test was performed 
using default TCP window frames of size 85.3 
KByte with time interval of 15 sec. 

 Perform load balancing on the congested source-
destination pair ( i.e. data path flow) 

 Perform an iperf and ping again on the source-
destination pair to measure the performance of the 
load balancing. 

Results for both scenarios based on the methodology are 
highlighted in the next section.   

 

IV. RESULTS AND DISCUSSIONS  

A. Scenario 1 

As shown in Fig. 2, scenario 1 was made of a smaller 
network with a total of seven switches and eight hosts. A 
mininet ping all was performed to ensure 100% reachability. 
H1-h8 was chosen as the source-destination pair. Using 
Dijkstra’s shortest path method, it was calculated that the 
best path for the pair is [S3-S2-S1-S5-S7].  It was also 
verified using Wireshark that transmission for the pair use 
the flow route [S3-S2-S1-S5-S7]. Using mininet xterm, a 
ping was performed for h1-h8 (i.e., on xterm h1, ping 
10.0.0.8 (h1’s IP address), and on xterm h8, ping 
10.0.0.1(h1’s IP address)). After congesting the best path for 
the source-destination pair, that is the flow [S3-S2-S1-S5-
S7], another ping and an iperf with h1 as the client and h8 as 
the server, were performed to measure bandwidth utilization 
on the flow before load balancing. The ping results are 
shown in Fig. 4 and the iperf results are shown in Fig 5. 



Load balancing was performed for the source-destination 
pair. The load balancing algorithm first computes all the flow 
paths for h1-h8 pair. The following was defined as the paths 
for the pair h1-h8: [S3-S2-S4-S1-S7], [S3-S2-S1-S5-S7].  
The algorithm then computes path costs for all the defined 
paths by using network statistics. The path cost is calculated 
as:  Cost= Tx +Rx where Tx is number of transmitted 
packets and Rx is number of received packed. The costs for 
the defined paths were calculated as [S3-S2-S4-S1-S7:0], 
[S3-S2-S1-S5-S7:8].  The path with lowest cost was chosen 
as the shortest path flow. That is to say [S3-S2-S4-S1-S7:1] 
was chosen and was pushed down to flow routing table as 
the flow to be used. Load balancing is repeated until path 
cost for all paths are equal (that is all paths will have same 
load). 

Ping and iperf tests were performed after load balancing 
to measure bandwidth utilization after the ping. Results are 
shown in Fig 4 and Fig 5 respectively. 

B. Scenario 2 

As shown in Fig. 3, scenario 2 was made of bigger 
network with a total of 40 switches and 81 hosts. Same 
process as described in section iv.A, was followed for 
scenario 2. The h7-h54 source-destination pair was used with 
the path flow [S5-S37-S39-S40-S25] as the defined default 
flow by Opendaylight controller. Ping and iperf results are 
shown in Fig. 6 and Fig. 7 respectively. 

For load balancing, the following were defined as the 
possible path flow with associated costs: 

 [S5-S37-S39-S40-S25: 4]; [S5-S37-S38-S40-S25:0];  

[S5-S37-S38-S39-S40-S25:0];[S5-S37-S39-S38-S40-
S25:0]. 

Path [S5-S37-S38-S40-S25] was chosen as the new path 
and load balancing was repeated until load was fairly 
distributed among the alternative path flows. Ping and iperf 
results are also shown in Fig. 6 and Fig. 7 respectively. 
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                  Fig. 4: Scenario 1 ping results for source-destination pair: h1-h8 
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                 Fig. 5: Scenario 1 Iperf results for source destination pair: h1-h8 

 



For load balancing, the following were defined as the 
possible path flow with associated costs: 

 [S5-S37-S39-S40-S25: 4]; [S5-S37-S38-S40-S25:0];  

[S5-S37-S38-S39-S40-S25:0]; [S5-S37-S39-S38-S40-
S25:0].Path [S5-S37-S38-S40-S25] was chosen as the new 
path and load balancing was repeated until load was fairly 
distributed among the alternative path flows. Ping and iperf 
results are also shown in Fig. 6 and Fig. 7 respectively. 

C. Discussions 

As it can be observed from the results of scenario 1, the 
maximum average ping after load balancing is 4.9m/s as 
compared to that of before load balancing which is 10m/s. 
The iperf results show an increase of about 2.2GB in data 
transfer after load balancing. However, the increase is not as 
significant as expected. This is assumed to be due to the fact 
that part of the alternative path routing path uses some link 

from the congested path. Notice that, the first links in both 
paths are the same: [S3-S2-S1-S5-S7] [S3-S2-S1-S5-S7]. 
From scenario 2, it can be observed that the increase is 
significant in data transfer, from about 4GB to 10 GB. 

This is because, unlike, in scenario 1, there are multiple 
different routing paths that the load balancer can use to 
transfer data. Therefore, the load balancer works much 
quicker when there are more options in alternative paths.   

From scenario 1 and 2, it can be concluded that the load 
balancer is flexible for both smaller networks and larger 
networks. It also can improve network performance and 
avoid overall network delay. 
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                   Fig. 6: Scenario 2 ping results for source-destination pair: h7-h54   
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                   Fig. 7: Scenario 2 Iperf results for source destination pair: h7-h54 

 

 

 

 

 



V. CONCLUSION  

We have performed load balancing for both larger and 
smaller networks using a dynamic multi-path load balancer 
in an OpenFlow based SDN data plane. The load balancer 
determines alternative paths first and then reroute traffic 
equally amongst the defined paths. The network topologies 
were emulated using mininet emulation tool. The network 
uses SDN Opendaylight controller which uses built in load 
balancer based on round robin and random policies. The 
performance of the built in load balancer was compared to 
the multi-path load balancer method. The load balancer has 
improved the overall network performance in transfer rate 
and response time. However, it was found that for better 
network improvement, the data plane should have multiple 
alternative links so that multiple path paths can be defined 
for a routing path. The overall contribution of this work is a 
multi-path load balancing method, which, unlike other load 
balancing method, can be applied to a network at any state( 
before date plane failure, or after data plane failure), to 
ensure network efficiency. 
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