Book Chapters
Permanent URI for this collection
Browse
Browsing Book Chapters by browse.metadata.impactarea "Advanced Healthcare Materials"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 2D MXenes nanomaterials for removal of organic wastewater contaminants(CRC Press, 2024-12) Mdlalose, Lindani M; Hlekelele, Lerato; Chauke, Vongaini PThe research and development of two-dimensional (2D) materials was prompted and advanced after the discovery of the remarkable physical properties of single/multiple layered graphene. This hastily encouraged more research on 2D materials in the form of manipulating the structure of graphene through exfoliation, altering the starting material with readily available layered precursors such as graphite-like hexagonal boron nitride or dichalcogenides or even layered oxides [1]. This then stimulated the development of more 2D materials including the birth of MXenes. MXenes are a group 2D transition metal carbides, carbonitrides, and nitrides discovered in 2011 [2]. Their single flakes are denoted by a chemical formula Mn+1 Xn Tx (n = 1 to 4), which designates transition metals alternating layers (M) enclosed by carbon/nitrogen (X) layers with attached terminations Tx (-O2 , -F2 , -OH2 , -Cl2 ) on the external transition metal surfaces [3]. Due to their intriguing electrical and optical properties, they play numerous roles in photodetectors. Additionally, their distinctive mechanical, chemical, and physical properties allow MXenes to be altered by various surface terminations and transition metals. The atomically narrow structure of 2D MXenes makes it an appropriate alternative material for water purification technologies. Additionally, its large surface area, excellent mechanical strength, and numerous functional groups on their surfaces make it a suitable candidate for the uptake of contaminants from aqueous medium [4]. MXenes water purification interest is facilitated by its unique adsorptive, antibacterial, and reductive properties, which are further augmented by high electrical conductivity. With the intensive industrialization and vast agricultural systems, the release of toxic contaminants into ground and surface water continues to be a strain on the environment. In this chapter, the potential use of 2D MXenes derivatives for organic contaminants (such as dyes, antibiotics, and pharmaceuticals) removal is addressed. This entails mechanistic pathways of using MXene-based materials as adsorbents, water purification membranes, and photocatalysts. The ability of MXenebased composites in showing catalytic activity toward diverse pollutants and superior selectivity toward specific pollutants will be discussed.Item Advanced of Starch-Based Bioplastics(Elsevier, 2024) Mtibe, Asanda; Nomadolo, Elizabeth N; Hlekelele, Lerato; Mokhena, TC; Ofosu, Osei; John, Maya J; Ojijo, Vincent OThe potential of starch-based plastics is well-known and well-researched. In recent years, starch-based materials have been used in both commercial and industrial applications to develop biodegradable and sustainable products and address the negative impacts caused by synthetic plastic products. Synthetic plastics are derived from petroleum-based resources and are non-biodegradable, causing plastic waste pollution. Starch-based bioplastics are selected as an alternative to synthetic plastics due to their availability, renewability, sustainability, biocompatibility, and biodegradability. The conversion of starch into thermoplastic starch (TPS) will be discussed in this study. In addition, the development of starch-based bioplastics using different processing techniques such as melt extrusion, injection molding, compression molding, blown film extruder as well as 3D and 4Dprinting will be also discussed. The market analysis of starch and starch-based materials, their properties, and applications, as well as prospects to determine if starch-based bioplastics are economically and practically feasible, will be thoroughly discussed.Item Introduction to hybrid piezoelectric materials(John Wiley & Sons, 2024-04) Dhlamini, Khanyisile S; Orasugh, Jonathan T; Ray, Suprakas S; Chattopadhyay, DIn response to the global energy crisis and pollution resulting primarily from nonrenewable energy sources, researchers are exploring alternative energy machinery capable of harvesting energy under ambient environmental conditions. Piezoelectric energy harvesting is rapidly becoming a preferred technique for powering devices on a mesoscale to microscale. Piezoelectric materials can produce electricity as a result of mechanical stress; these materials can also exhibit the inverse piezoelectric effect, known as the converse effect. Certain materials possess piezoelectric properties, such as bone, proteins, crystals (quartz), and ceramics (lead zirconate titanate). The combination of piezoelectric materials with two or more other materials leads to the development of hybrid materials that have improved properties and can be applied to novel applications. With hybrid piezoelectric materials, existing technologies can be enhanced, and new devices and systems can be developed, ranging from healthcare, ultrasonic transducers, energy storage, smart fabrics, sensors and actuators, energy-harvesting systems, and robotics.