Browsing by Author "Pillai, Sreejarani K"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advancements in antimicrobial textiles: Fabrication, mechanisms of action, and applications(2025) Orasugh, JT; Temane, Lesego Y; Pillai, Sreejarani K; Ray, Suprakas SWithin the past decade, much attention has been drawn to antimicrobial textiles due to their vast potential for reducing the spread of infectious diseases and improving hygiene standards in various environments. This review paper discusses recent studies on preparation methods, modes of action, effectiveness against different microorganisms, and applications of antimicrobial textiles in diverse industries. It examines further challenges, including durability, environmental impact, and regulatory considerations, and looks at prospects for developing and integrating these novel materials. This paper intends to provide a broad-based understanding of state-of-the-art technologies and emerging trends in antimicrobial textiles by integrating existing knowledge and highlighting recent advances in this field that contribute much to improved public health and safety.Item Chitosan coating loaded with spearmint essential oil nanoemulsion for antifungal protection in soft citrus (Citrus reticulata) fruits(2025-01) Maswanganye, LTC; Pillai, Sreejarani K; Sivakumar, DIn this study, chitosan (CH) was loaded with spearmint (S) essential oil nanoemulsion (EO) to provide antifungal properties during the postharvest storage of soft citrus fruits. (S)-EO (2%) nanoemulsion–CH (0.8%) coatings inhibited 100% of Penicillium italicum and Penicillium digitatum radial mycelial growth and spore germination in vitro. The (S)EO(2%) nanoemulsion–CH coating (0.8%) enhanced the antifungal activity by achieving 100% inhibition of P. digitatum in soft citrus cultivars ‘Nova’ and ‘Tango’ compared to the control in vivo. However, P. italicum decay was reduced to 33% and 18% in ‘Nova’ and ‘Tango’ soft citrus compared to the control. The (S)-EO (2%)-CH nanoemulsion coating system prepared by high shear homogenization showed a particle size of 252.3 nm and zeta potential of +21.6 mV, indicating changes in molecular interactions and structural reorganization between EO and CH. The polydispersity index values indicated a stable system. pH remained acidic, antifungal activity was favored, and the incorporation of the EO nanoemulsion improved the thermal stability of the CH coating. The optical properties showed less transparency and more opacity. Despite cultivar differences affecting host specificity, the study recommends using a 2% (S)EO nanoemulsion–CH (0.8%) coating instead of synthetic chemicals to extend citrus fruit storage life.