Repository logo
ResearchSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo ResearchSpace
  • Communities & Collections
  • Browse ResearchSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Goolab, Shivani"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Analyzing the molecular mechanism of lipoprotein localization in Brucella
    (Frontiers Media, 2015-10) Goolab, Shivani; Roth, Robyn L; Crampton, Michael C; Van Heerden, H
    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucellalipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway ofBrucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the ß-barrel assembly complex for translocation. This review provides an overview of the characterized BrucellaOM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella
  • No Thumbnail Available
    Item
    CRISPR-Cas9 mediated knockout of NDUFS4 in human iPSCs: A model for mitochondrial complex I deficiency
    (2024-11) Goolab, Shivani; Terburgh, T; Du Plessis, C; Scholefield, Janine
    Mitochondrial diseases, often caused by defects in complex I (CI) of the oxidative phosphorylation system, currently lack curative treatments. Human-relevant, high-throughput drug screening platforms are crucial for the discovery of effective therapeutics, with induced pluripotent stem cells (iPSCs) emerging as a valuable technology for this purpose. Here, we present a novel iPSC model of NDUFS4-related CI deficiency that displays a strong metabolic phenotype in the pluripotent state. Human iPSCs were edited using CRISPR-Cas9 to target the NDUFS4 gene, generating isogenic NDUFS4 knockout (KO) cell lines. Sanger sequencing detected heterozygous biallelic deletions, whereas no indel mutations were found in isogenic control cells. Western blotting confirmed the absence of NDUFS4 protein in KO iPSCs and CI enzyme kinetics showed a ~56 % reduction in activity compared to isogenic controls. Comprehensive metabolomic profiling revealed a distinct metabolic phenotype in NDUFS4 KO iPSCs, predominantly associated with an elevated NADH/NAD+ ratio, consistent with alterations observed in other models of mitochondrial dysfunction. Additionally, β-lapachone, a recognized NAD+ modulator, alleviated reductive stress in KO iPSCs by modifying the redox state in both the cytosol and mitochondria. Although undifferentiated iPSCs cannot fully replicate the complex cellular dynamics of the disease seen in vivo, these findings highlight the utility of iPSCs in providing a relevant metabolic milieu that can facilitate early-stage, high-throughput exploration of therapeutic strategies for mitochondrial dysfunction.
  • No Thumbnail Available
    Item
    Making gene editing accessible in resource limited environments: Recommendations to guide a first-time user
    (2024) Goolab, Shivani; Scholefield, Janine
    The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and β-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.
Quick Links
  • About us
  • Research & development
  • Work with us
  • Hosted sector initiatives
  • Careers
  • Publications
  • Multimedia
  • Contact
  • News
Legislation and compliance
  • Legal notice and disclaimer
  • Privacy notice
  • PAIA manual
  • Site map
  • Tenders
  • CSIR: Copyright
General Enquiries

Tel: + 27 12 841 2911
Email: callcentre@csir.co.za

Physical Address
Meiring Naudé Road
Brummeria
Pretoria
South Africa

Postal Address
PO Box 395
Pretoria 0001
South Africa

Social Connect

facebookyoutubetwitterlinkedininstagram

Copyright © CSIR 2017. All Rights Reserved

Resources on this site are free to download and reuse according to associated licensing provision. Please read the terms and conditions of usage of each resource.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback