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Abstract – This review outlines briefly the history of the phenomenon of ultrasonic 
nebulization of liquids since the discovery of such an effect by Michael Faraday and the 
explanation of the phenomenon by capillary wave mechanism and “cavitation” 
hypothesis. Ultrasonic spray pyrolysis for materials processing and the theory that 
predicts the final particle are discussed. The popularity of the technique is shown by the 
rising number of research groups in the world processing various materials by this 
method due to its cost-effectiveness, purity of its products and controllability of particle 
size and final properties.  
 
Keywords: Pyrolysis, Ultrasonic Spray, Surface Tension, Chemical Vapor Deposition, 
Viscosity 
 
 

 

1. Introduction 

Chemical vapour thermal deposition form one of the largest groups of techniques for realising a variety of 
materials in condensed matter science. The starting material is either a gas or liquid carefully chosen to end 
up into a stoichiometric material desired. The general process entails a source of chemical vapours/droplets 
which are carried into a heated zone for evaporation and decomposition and finally ending up either on a 
substrate (for thin films) or a filter (for powders) [see schematic in Fig. 1]. When dealing with vapours/gases 
as starting materials, the method is usually referred to as chemical vapour deposition (CVD); there are many 
forms of CVD. The term “spray pyrolysis” (SP) is used when dealing with liquid droplets or powders as 
precursor materials.  

 
Fig. 1 Generalised schematic of chemical vapor deposition systems on which ultrasonic spray pyrolysis is 
based 
 

The word pyrolysis is taken from a Greek word “pyre” which means “a pile of fuel or pile of wood” with 
specific reference to heating by flame [1]. Since such heating raises the precursor material to a plasma state 
where radicals, electrons and ions prevail, this process can be used in in-situ spectral analysis of elemental 
composition of the precursors in addition to the decomposition mechanisms, reaction kinetics and formation 
of new condensed matter. The source of heat can be a furnace (thermal CVD), a hot wire/filament (HWCVD, 
HFCVD), an intense light source such an I.R. CO2 laser or a UV excimer laser (laser pyrolysis LP), plasma 
source (plasma enhanced PE-CVD), an I. R. lamp or, simply, a heated substrate.  



 

A number of previous review articles have been presented on different forms of CVD: thermal CVD [2-
11], plasma enhanced PE-CVD [12-19], hot-wire or hot filament (HWCVD or HFCVD) [20-28] and not 
many of them have been as exhaustive in their respective areas. Pyrolysis, although classified under CVD in 
some text, has become a wide area of research and technology covering synthesis of new products, 
qualitative and quantitative spectroscopic analysis of fluids and, lately, alternative route to production of 
debri-free x-ray sources; these aspects are elaborated further in the sections that follow. In spray pyrolysis 
the droplets or vapours can be generated either by pneumatic nozzles in whistle-type sprayers or ultrasonic 
nebuliser. 

In the former the process is simply called spray pyrolysis (SP) and in the latter case, the process assumes 
the name “ultrasonic spray pyrolysis” (USP). An article on the versatility of spray pyrolysis by Pramod Patil 
[28] among other aspects tabulated publications up to early 1999 listing materials and spray pyrolysis 
parameters. Other reviews have been on specific materials employing spray pyrolysis as one of the wide 
range of methods used in producing such materials: superconductors [29], carbon nanostructres [30], ceramic 
nano-composites [31], diamond [32], semi-cokes [33], and semiconductors [34]. The present review chapter 
will restrict its discussion to ultrasonic spray (USP) technique on a wide range of materials especially from 
1999 to the present and on laser spray (LP) pyrolysis.  This is a period that has seen a lot of improvements to 
pyrolysis techniques to the extent that structures with new shapes and novel growth dimensionality have 
been produced in a controlled manner.  

The scarcity of specific review papers in a period like this one where numerous publications pertaining to 
materials synthesis by various versions of pyrolysis was the main motivation of the present compilation. 
First, a historical outline of the droplet generation phenomenon by ultrasonic nebulisation is given. This has 
not been covered in most previous reviews except by Yule et al. [35], Barreras et al. [36] and Nevolin [37]. 
These reviews have not covered pyrolysis but restricted themselves to the nebulisation phenomenon. The 
triumphs and challenges in ultrasonic spray pyrolysis are also presented. A tabulated literature survey and 
data-base from 1988 to 2008 is given and some unsolved problems in pyrolysis for materials processing with 
regard to droplet and particle size under different pyrolysis parameters are discussed.  

2. Ultrasonic nebulization phenomenon 

Ultrasonic atomization is a very effective method for production of ultra-small droplets and, after the 
droplets are pyrolyzed, the realisation of nano-sized materials. Quantum dots have been produced by spray 
pyrolysis [38]. Three approaches are common in the droplet production: (1) passing the liquid across a 
standing ultrasonic wave, (2) depositing the liquid over an ultrasonic transducer and (3) immersing a 
focussing ultrasonic transducer in the liquid in such a way that the liquid depth is equal to the focal length of 
the ultrasound lenses in the transducer. 

Generation of droplets by means of ultrasonic waves was first reported in 1927 by Wood and Lomis [39]. 
A number of mechanisms have been proposed to explain this phenomenon. At low excitation frequencies (20 
– 100 kHz), we can imagine that only surface molecules respond to form droplets; such waves are called 
capillary waves. At higher excitation frequencies (0.1- 5 MHz) and intensities, bulk atoms of the liquids 
come into play and this effect is called cavitation.  

2.1. Capillary Wave Mechanism 

The capillary wave proposal enjoyed intense research interest from the first known studies by Faraday 
[40] in 1831 to the present. It was Lord Kelvin, as elaborated in Rayleigh’s book [41] in 1871, who derived 
the well-known equation for the wavelength of capillary waves as 
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Here, λ is the wavelength, σ is the surface tension, ρ is the liquid density and f is the frequency of 

the surface waves. This equation was later modified by Rayleigh [41,42] to give 
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Note that F which is equal to 2f is not the frequency of the surface waves but rather the frequency of 

the forcing sound. The fact that the frequency of the surface waves is half the exciting frequency was 
empirically obtained from experimental measurements. A number of experimental workers in the 1950’s 
[43-48] pointed to unstable surface capillary waves as the origin of droplet formation relying on the 
simplified linear instability analysis. The 1962 experimental determination by Robert Lang [49] of the 
relationship between the wavelength of the capillary waves and the size of the droplets so formed spurred the 
capillary wave mechanism to greater heights. Lang showed that the droplet size, DL, and the capillary wave 
length λ were related by the empirical equation 

 
λ34.0=LD             (3) 

 
The subscript L in Eq. 3 signifies the Lang’s droplet diameter in distinction from other droplet diameter 
symbols to follow. Extra support from Sindayihebura & Bolle [50] in 1998 brought more assurance that 
capillary waves were probably the main mechanism. How drop formation may occur by unstable surface 
capillary waves was illustrated schematically as reproduced in Fig. 2 and this phenomenon is usually called 
the Taylor instability [52]. In the Taylor instability the liquid capillary waves are composed of crests (peaks) 
and troughs. Atomization takes place when unstable oscillations tear off the crests of the capillary waves 
away from the bulk of the liquid. Thus the droplets are produced at the crests whose size is proportional to 
the wavelength. 

 
Fig. 2 A sketch showing idealized droplet formation from standing-wave crests showing one period of wall 
vibration.  
 

A major revision to the Lang’s equation was done by Peskin & Raco [52] in 1963 and later, 1996, by 
Jokanovic et al. [53] who, rather than adopting an existing empirical equation, chose to derive a general 
equation from first principles. The analysis especially by Jokanovic et al. started from applying the 
Bernoulli’s equation to an incompressible fluid of density, ρ, surface tension, σ, under pressure, p, due to an 
ultrasonic excitation, f, from a depth, y, and thereby generating a disturbance of amplitude, ξ(x,t) given by 
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In this equation, ϕ is the rate potential. The boundary conditions employed were that when y = -h, v = 0 and 
∂ 2ϕ/∂x2 = 0 then 
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Here, cJ is a constant, kJ was taken to be the wave-number (2π/DJ) where in turn DJ is the 

Jokanovic’s aerosol droplet diameter (again to distinguish it from that of Lang above). The Mathieu’s 



 

function was then adopted which was observed to explain the typical shape of the relationship between the 
amplitude of the oscillation of the meniscus surface and the wave-number. The Mathieu’s function was given 
as 
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The solution of Eq. 2.6 for h >> ξ(x,t), that is, for small disturbances, found by Jokanovic was seen 

to be similar to that previous found by Peskin & Raco using a different analysis route (not reproduced here) 
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Note that the relationship between droplet diameter and the Kelvin relation for capillary wave length 

can also be derived from dimensional analysis as shown in by Mwakikunga et al. [55] given as 
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where kM is a dimensionless constant which according to Lang is 0.68π1/3 while, according to theoretical 
derivation by Peskin & Raco and Jokanovic, the constant kM is equal to π1/3. This means the droplet diameter 
as calculated by Lang’s equation is smaller by the factor of 0.68 in comparison with that determined by 
Jokanovic’s equation. Jokanovic et al. were able to show experimentally that their freshly derived equation 
yielded better agreement between calculated and experimentally determined droplet sizes. It must also be 
noted that Jokanovic et al. have arrived at Eq. 7 using various forms of the equation of motion of the liquid at 
the surface including one given by [54] 
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However, a number of more recent studies employing ultrasonic spray pyrolysis (an application to be 

discussed in the next section) and using either the Lang’s empirical formula (Eq. 3 and/or the Jokanovic’s 
revision Eq. 7) have shown that both equations have limitations. A serious conflict between theory and 
experiment reported by Nedeljkovic et al. [56] states: “Comparison of the theoretically [dJ = 195 nm, dL = 
132 nm] obtained results with the experimentally determined [dexp =286 nm] regardless of the equations 
being used for the determination of the aerosol droplets diameter undoubtedly shows that there is a 
substantial difference between the theory and the experiment, if the theoretical density of the particles 
packing was assumed…” And also according to Saponjic et al. [57] “Significant differences between the 
experimentally determined (285 nm) and the theoretically predicted values of the mean particle diameter 
(132 nm and 195 nm) were found indicating that the powder was highly porous…” 
 The reasons for this gross under–estimation by the theory of the experimentally determined particle 
size could be (1) the basic assumption in the Kelvin wavelength on which both the Lang’s formula and that 
of Jokanovic et al. are based and (2) the absence of the dependence of droplet size on liquid viscosity and the 
volumetric flow rate which is contrary to experimental observations.  

This calls for the consideration of the liquid’s bulk properties in the models. These shortfalls are 
discussed in the unsolved problems in USP in section. 

2.2. Cavitation Mechanism 

Cavitation hypothesis is generally applied to high frequency and high energy intensity systems. When a 
liquid is irradiated with an intense ultrasound field, cavitation bubbles are formed. During the implosive 



 

collapse of these bubbles near the surface of the liquid, high intensity hydraulic shocks are generated which 
in turn initiate disintegration into droplets. At such large intensities the excitation is beyond the liquid surface 
but extends into the liquid bulk contrary to the capillary hypotheses. Properties of the liquid bulk such as 
viscosity come into play as parameters affecting the nature of the final droplet. Sollner [58] was probably the 
first in 1936 to explain Wood & Loomis’s ultrasonic atomization demonstration in terms of cavitation 
produced under the liquid film. While Lang and the other workers developed the capillary hypothesis, the 
cavitation hypothesis was almost abandoned thanks to Eknadiosynats and co-workers [59,60] who resumed 
this area in the mid-60’s. Several studies after these tried to combine both hypotheses [61-64]. The effect of 
viscosity and surface tension on the Taylor instability has been studied [65], that the rate of growth of 
amplitude disturbance is affected by viscosity has been observed [66], the increasing importance of viscosity 
as surface tension decreases has been suggested [67] and the effects of density, viscosity, interfacial tension 
and relative fluid velocity on drop formation have been elaborated by Clark [68,69]. Another empirical 
equation for the prediction of the droplet size at high liquid flow rates was proposed in 1978 by Mochida 
[70] as 
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In this equation, σ and ρ have the usual meanings, µ is the viscosity and Q is the volumetric flow 

rate of the liquid. However, this equation does not account for the excitation frequency. Clark found that the 
dependence of droplet size on viscosity roughly followed the proportionality 

 
303.0166.0 −≈ µD            (11) 

 
Tsai et al. [71] found in 1996 that droplet size and volumetric flow rate were correlating 

approximately thus 
 

30.025.0 −≈ QD             (12) 
 
This was quite in conflict with Mochida with his exponent being outside the range set in the Tsai et al. 
improved measurement. 

2.3. A Combination of Capillary and Cavitation Hypotheses 

More careful observations have shown that apart from the traditional parameters of surface tension, 
viscosity, density, forcing frequency and volumetric flow rate additional parameters such as geometry of the 
vibrating surface, the amplitude of the oscillations, the intensity of the ultrasound power or the energy 
density have a lot to do with the size of the droplet so produced. To this end Rajan and Pandit [72] in 1996 
developed a new correlation equation to take into account some of these extraneous parameters and was 
found to be 
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The symbols A, We, Oh, IN are respectively the surface area of the droplet, the Weber’s number (the number 
that describes atomization), the Ohnesorge’s number (or the viscous number) and the intensity number (the 
number affected by the geometry of the vibrating surface) defined in the following expressions: 
 

σ
ρfQ

We=            (14) 



 

ρ
µ

2. mAf
Oh =            (15) 

Qv

Af
I

s

m
N

42

=            (16) 

Most symbols have usual meaning but Am is the amplitude, vs is the speed of sound. Three alternate 
correlations to Eq. 13 were derived by Rajan and Pandit [72]: (1) using the Rayleigh instability criterion, (2) 
using the Walzel relation and (3) using Davies approach respectively  
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A parity plot is one of the most convenient graphical techniques for evaluating the theoretically 

calculated quantity and the experimentally observed quantity. Rajan and Pandit [72] also presented parity 
plots for correlations in Eq. 13 and Eq. 19 and we reproduce them in Fig. 3  

 
Fig. 3 Plots for correlations Eq. 13 and Eq. 19 for water droplets. The dotted line is a line that indicates the 
points where calculated quantity is exactly equal to the experimentally measured quantity. 
 

From the parity plots one sees that most points are below the equality line signifying that the 
measured drop size is mostly less than the calculated drop size. This means that the Rajan-Pandit correlations 
are over-estimating the observed droplet size. 

Avvaru et al. [73] have recently, in 2006, modified Eq. 13 to suit the so-called “Newtonian viscous 
liquids” given as 
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In order to validate their theory, one of the Newtonian liquids  glycerine   was used in their study and 
the parity plots done using correlations in Eq. 13 and 19 were presented and are herein reproduced in Fig. 4. 



 

In comparison with the Rajan-Pandit parity plots, one can clearly see a remarkable improvement in the 
alignment of the calculated –experimental points to the equality line. 

 
Fig. 4 A typical parity plot for a Newtonian liquid, glycerine (From Avvaru et al Ref. 117). 
 
However, one can also see departure from the ideal equality line when droplet diameters exceed 400 µm. 
Therefore beyond this point the Avvaru correlation over-estimated the droplet sizes. Also even within the 
region where there is apparently good agreement, more points are above the equality line indicating that, in 
this region (200 – 350 µm), the Avvaru correlation under−estimated the droplet size. Overall, however, the 
Avvaru correlation is a big improvement over that of Rajan-Pandit. Avvaru et al. are also able to confirm and 
demonstrate the presence of cavitation in the droplet ejection by arranging an ingenious experiment. In this 
experiment, the ultrasonic generator is tilted horizontally and the force of droplet ejection is balanced with 
the environmental drag force from which the ejection velocity is determined. Using their so-derived 
differential equation, they are able to show that the Newtonian liquids such as glycerine yield an ejection 
velocity of 12.6 ms-1 whereas the non-Newtonian liquids yield an ejection velocity of 3.5 ms-1. In both cases 
the ejection velocity is higher than the cavitation-less ejection velocity of 0.144 ms-1 which is attributed to 
capillary theory. 

3. Effects of Pressure and Temperature on Surface Tension, Density and Viscosity of Fluids 

With improvements of the theory, it is hoped that the future is bright with regard to understanding the 
phenomenon of ultrasonic generation of droplet from liquids. One of the many unsolved problems 
concerning the droplet size as a function of the liquid properties of surface tension, σ, viscosity, γ, density, ρ 
and so forth involves finding from thermodynamics how these properties vary when the liquid temperature 
and pressure change. In Mwakikunga et al. [Ref. 55], such a temperature–and–pressure dependent droplet 
size was dealt with by considering that droplet size took the expression in Eq. 8. Eq. 20 could also be re-
written in the like manner as 
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3.1. Surface Tension as a Function of Temperature and Pressure 



 

One of the earliest experimental studies on surface tension determination at varying pressure was carried 
out by Lynde [74] in 1906. In this study the surface tension at the interface between two liquids was 
determined via the derived equation 
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θ was the angle of contact, HD was the difference in height between the two liquids in the manometer, r tube 
was the radius of the capillary tube and ρ2, ρ1 were densities of the two respective liquids. Taking a 
differential of Eq. 22 with respect to pressure p, Lynde got 
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By dividing Eq. 23 by Eq. 22, Lynde arrived at the following expression 
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The first term on the right hand side of Eq. 24 was measured experimentally by observing the change in 
height at varying pressure. The second term was determined from compressibility factors of the two liquids 
at varying pressure since dρ/dp is compressibility factor in the first place. With these measurements, Lynde 
was able to establish that a plot (1/σ)(δσ/δp) versus p was a positive linear graph for mercury–water system 
and for mercury–ether system. The same was a negative linear plot for water – ether system and for 
chloroform–water system. However, for the carbon bi-sulphide – water system a parabolic line-shape was 
obtained. These results showed that the surface tension–pressure relation depends on not only on the liquid 
types but also on how the liquid densities vary with pressure which is discussed in the next few pages. For 
the case where the (1/σ)(δσ/δp) versus p graphs are linear,  
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kσ is a proportionality constant in Pa-2. Surface tension can then be written in terms of pressure as follows: 
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σ0 is the surface tension at atmospheric pressure p0. Sachs et al. [75] in 1995 summarized all σ-p data from 
methane-water system up to that time [75-79] and their charts are reproduced in Fig. 5  

For one to see the effect of temperature on surface temperature, one can turn to the important work of S. J. 
Palmer [80] in 1976.  Palmer’s theory based on (1) the calculation of the difference in energies of interaction 
between molecules in bulk and those on the surface or ‘excess energy’ (2) the minimum potential energy of 
these molecules due to a balance between attractive and repulsive forces at a critical temperature Tc.  



 

 
Fig. 5 Pressure and temperature dependence of the surface tension σ in the system methane-water; all data 
published in Ref. 119 until 1995. ∆, Ref. 120; •, Ref. 121; ⊕, Ref. 122 and o, Ref. 123. 

 
The derivation led to the following expression: 
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Where n and N0 are the co-ordination numbers or the number of nearest neighboring molecules around one 
molecule in bulk and on the surface respectively, ρ is the density of the liquid, M is the molar mass of the 
liquid and kB is the Boltzmann’s constant. 

It was shown in Mwakikunga et al. [Ref. 55] that based on fundamental thermodynamics, the general 
relationship between surface tension and temperature is given as [81-83] 
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where H is the energy required to increase the area of the liquid in contact with air by a unit area. It should 
be noted that H is always positive. Since σ always decreases as T increase, in accordance also with the 
Palmer equation in Eq. 27, then the derivative dσ/dT is always negative. It can be shown that Eq. 28 carries 
the same meaning as Eq. 27 with H = (n/4)(N0ρ/M)2/3kBTc and dσ/dT = -(n/4)(N0ρ/M)2/3kB. Based on the two 
separate relationships of surface tension as a function of pressure according to the current generalization of 
Lynde’s empirical study and temperature from Palmer’s theory, one can write a combined relationship as 
follows 
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However, from Lynde’s experiments, it is difficult to ascertain the σ-p relationship since the nature of 
dependence is also dependent on the ρ-p dependence which was not yet known but which will be shown in 



 

the sections that follow. Also in Palmer’s theory, density of the liquid is assumed constant with temperature. 
However, so far this could be the only equation that combines the effect of pressure and temperature on 
surface tension.  
 
There have been other recent σ(p,T) equations specific to some materials such as the one by Park and co-
workers [83] who showed empirically the effect of surface tension of polystyrene droplets in supercritical 
carbon dioxide which was found to be  
 

( ) pTpTTp 510596.201.00559.07032.38, −×+−−=σ       (30) 
And which was true only in the temperature range from 170oC to 210oC and from pressure of 500psi to 2500 
psi. Their experimental results on σ(p,T) were plotted on a chart which is reproduced in Fig. 6 

 
Fig. 6 Surface tension as a function of temperature and pressure for glycerine [From Park et al., J. Phys. 
Chem. (2007)] 
 

An article on surface tension given by Escobedo & Mansoori (1996) [84] based on the 1923 proposal by 
Macleod that surface tension of a liquid could be expressed in terms of its vapour ρ and liquid ρv densities 
thus: 
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where Π is called the parachor. Although it was thought to be a constant but, lately, it has been realized that 
parachor is in turn temperature dependent since both surface tension and density are temperature dependent. 
From statistical calculations, Boudh-Hir & Mansoori (1990) [85] derived an expression for Π of the 
following nature: 
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where B is an exponent, the subscript c denotes the critical temperature values, z is the activity, µc is the 
chemical potential, h is the Planck’s constant and ζ(τ, ρ, ρv) is a statistical-mechanical function that shows 
liquid surface tension dependency on its liquid-state and vapour-state densities and temperature.  
Another theoretical and empirical study of the surface tension data by Pandey [86] of ternary liquid system 
comprising liquid nitrogen, liquid oxygen and liquid argon revealed the relation to take the form a relation 
developed by Brock & Bird in 1955. This expression for non-polar liquids was derived by utilizing the 
power law concept applicable to temperature away from the critical point and is here given by 
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Pc, Tc and Zc are respectively critical temperature, pressure and compressibility factor. 

3.2. Liquid Density as a Function of Temperature and Pressure 

When one needs to consider the effects of pressure on density, thermodynamical equations of state (EOS) 
are used. Wong et al. (1996) [87] used the van der Waal’s EOS to study the pressure and temperature effects 
on density of liquid lubricants. They found that density increases with increasing pressure but decrease upon 
a raise in temperature as confirmed by their experiments. The van der Waal’s equation of state for a real 
gases was used to find the ρ(p,T) expression which was used to modify the droplet equation in Eq. 8 [55].  
An improved and more appropriate EOS for liquids was proposed by Redlich & Kwong in 1949 [88] that 
accurately predicts densities of fluids thus 
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δ is a parameter which further depends on temperature. By finding ρ as the subject of this equation,  
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one can find the expression of density as a function of temperature and pressure by solving the Eq. 35 and 
this variation of density is sketched in Fig.  7 (a) and (b) 



 

 
Fig. 7 Plots showing how density varies with (a) pressure and (b) temperature from Eq. 34 (Density values 
are not realistic and are not specific to any materials) 
 

3.3. Effect of Temperature and Pressure on Liquid Viscocity 

The principal observed qualitative facts are that (1) all gases at ordinary pressures become more viscous as 
the temperature is raised, (2) most liquids become less viscous as the temperature is raised, (3) highly 
compressed gases resemble liquids, they become less viscous and (4) for a few liquids (such as liquid helium 
and liquid sulphur). 

There is a range of temperatures over which the viscosity increases as the temperature is raised. As was the 
case with surface tension, the variation of viscosity with pressure is expected to be one of the inverse nature. 

It is known from Wright [89] that, as early as 1886, Reynolds proposed an expression for the change of 
viscosity with temperature for liquids and compressed gases given as µ ∼ exp (const/T). This was based on 
the observation of the similarity of viscous flow to diffusion (diffusion coefficient is given by D being ∝ 
exp(const/T) and also by regarding the flow of molecules past each other as analogous to a chemical reaction 
(the effect of temperature on the rate of chemical reaction R being also ∝ exp(E/RT) where E is the activation 
energy).  The general form of the pressure [90] and temperature [91] dependence of viscosity has been 



 

known for at least 50 years. Viscosity is now known to vary with temperature in a greater than exponential 
manner and temperature –viscosity equations generally allow for an unbounded viscosity at some 
characteristic temperature. At high pressure, the pressure-viscosity response is likewise greater than 
exponential, often following a less exponential response at low pressures [91]. 

Fein [92] considered that the low shear viscosity, µ, was an exponential of fluid density. Later, the so 
called “free volume model was developed [93]. A viscosity model that can describe the temperature and 
pressure response is the pressure modified equation introduced by Yasutomi et al. using the free volume 
model [94] given here as 
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µg is the viscosity at a glass transition temperature Tg given by the expression in the triangular brackets. The 
expression in curly brackets is the relative free volume expansivity and A1, A2, B1, B2, C1, C2 and Tg0 are 
parameters that are determined by fitting Eq. 36 to experimental data for a specific fluid. Eq. 36 suggests that 
increase in pressure raises viscosity whereas the raise in temperature drops viscosity as shown in Fig. 8 



 

 
Fig. 8 Variation of viscosity with pressure and temperature (a) and temperature (b) for jet lube Mil L23699 
(open circles) and a traction liquid (closed circles) [S. Bair et al. (2001)] 

3.4. Final Droplet and Particle Size Formula 

Every ultrasonic transducer/nebulizer generates heat into the liquid which it is intended to produce droplets 
from. Since ultrasonic spray pyrolysis set-ups are closed systems, an increase in the temperature 
accompanies an increase in pressure. The subsequent increases in temperature and pressure affect the 
density, surface tension and viscosity. As such the droplet size, which is heavily dependent on these 
parameters, is also affected. In this section, the study on how these changes in temperature and pressure in 



 

the precursor liquid would affect the droplet size and hence the final particle sizes after pyrolysis are 
consolidated.  

From sections 2.1 to 2.3 is seen that all the three parameters decrease as temperature is increased. 
However, as pressure is increased, only surface tension decreases; the other two parameter- density and 
viscosity- increase.  
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After substituting the pertinent parameters, the droplet size can be written in terms of the temperature and 
pressure dependent liquid density, viscosity and surface tension from Eqs. 29, 35 and 36 as  
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Fig. 9 A plot showing the variation of density (Eq. 35) and droplet size (Eq. 41) with liquid temperature  
 
The density-temperature function was adopted from the Redlich-Kwong equation in Eq. 34, surface tension 
was taken from the presently derived expression from Lynde and Palmer theories given in Eq. 29 and 
viscosity-temperature profile was determined from Eq. 36, plotted in Fig. 9, shows the variation of droplet 
size as a function of liquid temperature. The droplet size decreases as temperature is increased.  

The small changes in liquid pressure in a typical pyrolysis session lead to very small changes in surface 
tension, density and viscosity and hence on the droplet size. The droplet-size versus liquid pressure is 
therefore not shown. 



 

4. Theory of Pyrolysis for Predicting Final Particle Size 

Pyrolysis is an application of the phenomenon of droplet generation from liquids by ultrasound waves. It 
involves materials deposition by carrying the so-produced liquid droplets into a heated zone where the 
droplets undergo (1) evaporation, (2) decomposition (3) reaction into new products and (4) condensation of 
the new product onto a filter or a substrate [Fig. 10]   

 
Fig. 10 Simple schematic of ultrasonic spray pyrolysis showing an ultrasonic nebulizer immersed in the 
precursor solution where droplets are generated and transport into a tube furnace for eventual pyrolysis and 
deposition onto substrates. 
 

The theory of transitions of the liquid precursor droplet of initial diameter, D, in the heat field and the 
consequent transformation into a new material particle of diameter d is simple. During the preparation of the 
precursor solution suitable for spray pyrolysis, a precursor material of mass mpr is dissolved in a solvent so 
that if the concentration of this precursor in the solvent is cpr then 
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D is dependent on both frequency of the sound and the concentration of the precursor [348] as shown in the 
previous sections and as illustrated in Fig. 11 with data taken from Gurmen’s group [348,353,391] 



 

 
Fig. 11 Experimental observation of the dependency of droplet and hence particle size on nebuliser 
frequency (a) and precursor concentration (b). Data taken from S. Gurmen et al., Mater. Res. Bull. (2006) 
 

After pyrolysis–dissociation and decomposition – the precursor material, a remnant of evaporation, is 
further reduced to the final particulate of mass of mp plus other species that mostly are in gaseous state and 
hence evaporate off without depositing. The particulate mass after assembly can be written as 
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Mp and Mpr are the molecular masses of the final particle and the precursor material respectively. Assuming 
that the initial liquid precursor droplets and the final solid particles are spherical Eq. 42 and Eq. 43 can be 
combined to give 
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d is the final particle diameter. This simplifies to the following equation 
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Eq. 43 has been widely used by a number authors employing ultrasonic spray pyrolysis in production of 
nano-particles to predict the final particle sizes.  

5. Popularity of Ultrasonic Spray Pyrolysis 

 
USP as an application of the ultrasonic droplet generation phenomenon has attractive features, like the 
traditional spray pyrolysis, of simplicity, economic viability, high deposition rate, possibility of coating over 
large areas and continuous operation [55]. But unlike other commonly known pneumatic atomizers, it has 
been described to possess the advantages of “… chemical purity and stoichiometry” and allows a narrow 
distribution of particle sizes.  A large proportion of the droplets is below 20 µm and these are produced with 
low in-flight speed. This prevents the droplets from being removed from the gas phase by impact onto the 
walls of the reactor and through droplet-to-droplet collisions and consequent coalescence. The major 
disadvantages are potential for hollow structure or fractured particles which could be good for other 
applications and that the droplet production rate is typically low and highly dependent on the throughput of 
the nebulizer. 

 
Fig. 12 Growing popularity of ultrasonic spray pyrolysis as measure by the number of publications (journal 
papers and conference proceedings) released per year since 1988 [96-512]. 



 

Since there are numerous publications, in the period from 1988 to the present (more than 730) [96-512], on 
materials processed using ultrasonic pyrolysis, it was seen as convenient to plot a time series graph as 
illustrated in Fig. 12. 

6. Parameter Optimization in USP: Droplet Residence Time 

One of the most important parameters for optimization of ultrasonic spray pyrolysis is flow rate of the 
precursor droplet. At extremely low flow rates, the throughput of the USP system is small at the benefit of 
obtaining truly nano-sized, nano-structured and completely-decomposed targeted materials. At extremely 
high flow rates, yield is high but complete decomposition of the precursor is compromized as the residence 
time of the precursor in the heated zone is small. An optimum flow rate is therefore necessary to obtain both 
high yield and pure materials. The relationship for residence time can be easily shown to be d and L are the 
diameter and length of the reactor respectively and Q0 is the flow rate of the precursor assuming that the 
velocity of the carrier gas is the same as the velocity of the carried precursor droplets.  
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In the real case where the above assumption does not apply, temperature, T, and pressure, p, of the system 
are taken into account. In this case then the expression for residence time is given by C. Michel et al. (2006) 
[191] as 
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T0 is room temperature, P0 is the atmospheric pressure. In order to maximize tres one can increase L to the 
maximum possible length. Increasing L has the disadvantage of an uneven temperature profile over a long 
distance. 

One then needs to have several short heating zones whose temperature profiles are constant and 
manageable. Since the nature of products from USP depends in part on the control of the furnace 
temperature, Taniguchi and co-workers [137, 142,164,179,182,187,250,263,303,310,327,387] have made an 
elaborate setup with a furnace having several heating zones. A typical example of such multi-zone furnaces 
was well illustrated by Taniguchi’s group [137]. This is illustrated in Fig. 13 



 

 
Fig. 13 A typical example of an ultrasonic spray pyrolysis employing a multi-zone furnace for control of 
product shape, particle size and other parameters.  From Taniguchi’s group.  

7. Various Forms of USP 

Worth noting are a few USP set-ups that have attracted attention through the years and the novel nano-
structured materials they have produced. A setup by CNR Rao’s group illustrated in Fig 14 had an ingenious 
provision for constant precursor liquid level apart from the usual USP components [97,99].  



 

 
Fig. 14 A nebulised spray pyrolysis by C.N.R. Rao’s group (from Ref. 97,99) 
 

7.1. Asynchronous Pulse USP 

 
The asynchronous-pulse ultrasonic spray pyrolysis (APUSP) is another interesting design suitable for growth 
of stacked films or controlled doping and development of superlattices [106,157,158,160]. In APUSP, two 
more ultrasonicator-containing chambers are harnessed. Each chamber contains the appropriate precursor 
solutions that are to be deposited – the host and the dopant etc. The “sonicators” in these chambers are 
controlled by a pulse generator one at a time in an asynchronous manner. The period of each chamber’s pulse 
determines the level of doping, or the thickness of the layers in the superlattices.  

In a typical APUSP (Michel Lopez and Zea 2006 Ref. 191) an inert gas is first introduced to the reaction 
chamber at relatively low and steady flow rate for about 30 minutes to drive the air out. The nebulised 
solutions – precursor and dopant are delivered to the substrates in pulses through the nozzles. 

Each spray lasts 5 seconds for both but after the spray of the dopant is conducted, a delay of 2-4 seconds 
was employed to ensure that the introduced dopant was completely decomposed before conveying a pulse 
spray of the host. The deposition is carried out by repeatedly performing these spray processes. It took 12-14 
s for each cycle and the deposition time lasted for 15 -30 mins for the preparation of one sample. 

An appropriate interval between the pulse spray of dopant and host solutions play an important role in 
depositing high crystallinity films. There are cases where the precursor liquid to be sonicated passes through 
the ultrasonicator and introduced from the top rather than from the bottom. 



 

This design has the advantage of high yield of final desired product. However, introducing droplets from 
below has the advantage of selecting on the small droplets with most of the large one returning to the 
precursor under gravity. In both the Lee et al. (1998) [106,157] set up and that of Patil & Patil (2000) 
[73,104,120,124,374,375,430,439,492] the substrate has its own special heater apart from the standard 
furnace. Contrary to heating substrates, Kang & Park (1999) 
[113,114,118,145,161,170,176,178,198,239,262], realised that subjecting the particle collector to coolants 
such as liquid nitrogen helped prevent Ag nano-particle agglomeration and they become well dispersed in 
ZnO. 

Note that in their USP design, they included a temperature controlling water bath around the precursor 
container to prevent changes in temperature and pressure which in turn have an effect on droplet size as 
shown in the previous sections. 

7.2. Electrostatic Nebulizer USP 

 
Recently, another innovation to USP [Zaouk et al Ref. 206, Chen et al Ref 240, 249, Chang & 

Hwang, Ref. 304, Bin et al Ref. 332, Lee et al, Ref. 458 and Min et al Ref 502, 503] has been the manner in 
which droplets are produced from the precursor liquid. Apart from spraying with ultrasonic nebulisers, it has 
been realized from the days of Lord Kelvin that by applying a high potential difference to the liquid surface 
makes such a surface erupt into liquid droplets. In electrostatic assisted USP (EAUSP), a high tension is 
applied between the liquid and the substrate. There are cases where the precursor liquid to be sonicated 
passes through the ultra-sonicator and introduced from the top rather than from the bottom  

This design has the advantage of high yield of final desired product. However, introducing droplets 
from below has the advantage of selecting on the small droplets with most of the large one returning to the 
precursor under gravity. If a liquid is forced to flow through a small nozzle which is subjected to an electric 
field, the liquid will exit the outlet in different forms or modes as a result of different electrodynamic 
mechanisms. These modes include among others dripping mode, cone mode, cone-jet mode and spindle 
mode [Zaouk et al., 2000 Ref. 206]. The kind of mode the spray displays depends on the electrical potential 
applied to the nozzle, the flow rate, the conductivity and the surface tension.  

For film deposition, the cone-jet mode is the most suitable, it is a continuous mode and the formation 
of a homogeneous fine spray is possible. In this mode, there exists the so-called “Taylor cone” with 49.3o 
half angle at the apex of the cone (see Taylor instability in the previous section). This cone is extended by a 
jet which breaks up into spray droplets to generate an aerosol of the precursor liquid. Chen et al. [140] final 
particle morphology has large particles and large flakes. This could be due to agglomeration of droplet as 
they descend. 

The best way to select only the small droplets is to have the substrate above the spray. The large ones 
cannot make it to the substrate and therefore are forced to return to the ultrasonic nebuliser. As for Zaouk et 
al., the potentials need to be optimized for self assembly. 
 



 

 
Fig. 15 (a) Electrostatic assisted USP (EAUSP), note that aerosol are directed onto the substrate from the top 
(Redrawn from Chen et al., Mater. Res. Bul, 2007) (b) Electrostatic spray deposition (ESD); note that 
deposition is from bottom to top (Adapted from Zaouk et al.) 

7.3. Infrared USP 

An interesting USP system employing a novel heating source was reported by Matsuzaki and co-workers 
[117] when synthesizing yttria stabilized zirconia thin films. Their substrates temperatures were controlled 
by heating a “susceptor“ with an infrared radiation heater.  

The substrate temperature could be tuned from 873 K to 1023 K. It is interesting to note that grain size 
increases with substrate temperature, the Arrhenius plot shows that the activation energy for yttria stabilized 
zirconia is about 68 kJ mol-1 and grain size increases with increase in deposition rate. The particles obtained 
by this work were rather large in general. This could be due to (1) agglomeration at higher substrate 
temperatures an effect known as the Oswald’s ripening (2) spraying from the top as alluded to before.  

The Ostwald’s ripening observed here should be distinguished from the opposite effect which was 
observed recently and reported in Mwakikunga et al. [55,243-247,333,511]. 

Mwakikunga et al. found spheres of WO3 obtained from USP to shrink in diameter as the furnace 
temperature was increased without heating the substrates where the perfect sphere would land. In the case of 
shrinkage in diameter as a function of surrounding temperature, it was found that the data was in agreement 
with the Tiller equation given as 
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σe is the interfacial energy between the nucleating materials and the surrounding environment and ΩM is the 
molar volume of the nucleating material. A number of authors have used this equation in explaining the 
growth of nano-wires by chemical vapour deposition [Tan et al., APL (2003) Ref. 148] 
 

7.4. Flame-Assisted USP 

An interesting kind of pyrolysis is called flame assisted USP (FAUSP) [108,130,159,208,209,241,344]. 
FAUSP was developed in the 1980’s. It operates by injecting the spray of a precursor solution obtained from 
an aerosol generator into a combustion chamber where the individual droplets are rapidly combusted. Fuel 
such as natural gas or hydrogen is introduced in order to generate the appropriate high temperature. In some 
case, instead of external fuels, flammable alcoholic solutions are used as precursors. 



 

 
Fig. 16 (a) Infrared USP and (b) Flame assisted USP (FAUSP) Redrawn from: Chen et al., Eur. J. Solid State 
& Inorg. Chem. (1998)  

8. Morphology, Structural and Other Properties of Materials Obtained by USP 

8.1. Solid and Hollow Spheres 

The spherical shape of the particles definitely comes from the spherical droplets from the precursor liquid. 
When scanning electron microscopy is performed on these particles one can see the manifestation of 
spherical daughter particles from mother spherical liquid droplets. The particle size may be less than 3 µm 
[see Fig. 18 from Oh et al Refs. 169,176,184,198,199,202,227,239,432,438] from the four SEM micrographs 
(a) but at higher magnification with TEM (bottom right) the morphology changes to one showing that the 
spheres are composed of numerous crystallites whose size as determined by the Scherrer equation from X 
ray diffraction shows they are nano-crystalline. The crystallite size increases as the calcinations temperature 
is increased. Bucko, Ref. 209]. This is equivalent to increasing substrate temperature and thereby increasing 
particle and crystallites sizes as seen above. However, this is to be contrasted from the in-situ furnace 
temperature increase which has the reverse effect of decreasing the particle and crystallite size as shown in 
Fig. 20 [from M Yuan et al. (1998) [Refs 108, 112] also found hollow spheres when preparing zirconia and 
yttria-stabilized- zirconia (YSZ) fine powders by flame- assisted ultrasonic spray pyrolysis. This was 
attributed to the presence of nitrates in the precursor. 

Prior to this study, Messing et al. [96,98] had studied the spray pyrolysis of nitrate solutions and 
proposed a mechanism to explain the particle morphology. During the pyrolysis of spray droplets in the 
flame, the evaporation of the solvent and the reaction/decomposition of the solute proceed successively from 
the outer part to the inner part of the droplets. When a nitrate solute with a relatively low melting point is 
present, it melts to fill the pores of the structure. The molten salt will inhibit the removal of the trapped 
solvent in the inner parts of the droplets as a result of the reduction of the gas permeation. This leads to a 
build-up of internal gas pressure and, finally, explosion or foaming of the particles to form hollow particles 
or particle fragmentation with a broad size distribution. 



 

 
Fig. 17 The figure shows the effect of calcination temperature on morphology and crystallinity of Co3O4, 
CuO and NiO. From S. W. Oh et al. 

 
Fig. 18 Effect of furnace temperature during synthesis on the morphology and crystallinity of BZrO3 
nanopowders by USP (from M.M. Bucko & J. Obłąkowski, J Eur Ceram Soc., (2007) [Ref. 209]) 



 

 
Fig. 19 (a) and (b) SEM images of hydroxyapatite (Hap) powders by the USP/SAD method showing the 
gaping hole in one of the spheres in (b) an indication of the possibly hollow nature of these spheres [From 
G.-H. An et al., Mater. Sci. Eng. (2007) Ref. 163] (c) More vivid proof of hollow NiO–Sm0.2Ce0.8O1.9 
composite spheres [S. Suda et al., Solid State Ionics (2006) Ref. 196] (d) and (e) HRTEM image of 
LiFePO4/C composite prepared at 450oC showing a shell structure and the intersection of the shells of other 
spheres [From M. R. Yang, J. Power Sources (2006) Ref. 201,204]  (f) A conceptual model proposed by 
Yang et al. (2006) on how the hollow LiFePO4/C composites form with or without voids. 

 
Fig. 20 Examples of XRD, SEM and TEM micrographs of LiMn2O4 particles prepared from various 
precursors (1) dense LiMn2O4 with porous surface structure (2) hollow LiMn2O4 particles with hybrid 
surface structure (3) hollow LiMn2O4 particles with smooth surface structure and (4) hollow LiMn 2O4 with 
shrinkage surface structure. From Matsuda & Taniguchi, Journal of Power Sources (2004) 

8.2. One-Dimensional Nanostructures from USP: Nanowires, Nanoribbons, Nanorods 

Of interest, apart from the production of nano-particles by ultrasonic spray pyrolysis, has been the 
attainment of one-dimensional structures. Many of the one- dimensional structures have been micro-sized 
such as the ZnO nanorods grown almost at right angles to the substrate surface [212,214,233] as shown in 
Fig. 21. This one-dimensional growth only happens at specific conditions. Note that as furnace temperature 
is reduced that micro-rod diameter decreases. 

Another interesting case of one dimensional growth by USP was observed by Htay et al. 
[242,254,317,367,477] who reported micro-sized platelets, wires and tips of ZnO obtained at controlled 
conditions. Temperature of synthesis was found to dictate the morphology of the micro and submicron-
structures that they obtained. In this case different furnace temperatures yield different structures- rods, wires 



 

or platelets. One-dimensional growth from spheres of WO3 which transform themselves into WxOy 
nanowires after thermal annealing at 500oC in argon for 17 hours [Ref. 243-247,333,511] has been observed. 

Recently dense one-dimensional nano-ribbons of VO2 grown by USP at 700oC in argon carrier gas without 
the need for thermal annealing [Fig. 24 and 25] were also observed [unpublished]. Their electronic transition 
temperature at 70oC was confirmed using a four-point probe technique. It was found that for the same 
synthesis conditions, furnace temperature, precursor flow rate etc, vanadium oxides yielded mostly 
nanobelts, nanoribbons and sheets where tungsten oxides showed nanowires and nanorods.  

 
Fig. 21 SEM images of ZnO microrods deposited by USP at (a) 550oC (b) 500oC, (c) 450oC and (d) 400oC 
[From U. Alver et al., Mater. Chem. Phys. (2007) Ref. 233] 



 

 
Fig. 22 (a) SEM micrograph of VO2 nano-ribbons (b) tilted at φ = 54° (c) an EDS spectrum showing the V 
and O peaks on a carbon adhesive tape substrate and (d) size (thickness) distribution histogram (thickness 
determined from τz= τ′z/sinφ as illustrated in the inset of (d))  

 
Fig. 23 Transmission electron microscopy (a) low resolution image (b) low resolution on a single ribbon (c) 
higher resolution on the edge of ribbon revealed bi-layered structure: V2O5 and VO2 and in some ribbons a 
core-shell structure. (d) and (e) are SAED patterns for V2O5 and VO2 regions respectively (f) AFM height 
image of a single VO2 nano-ribbon. The profile (g) shows that the VO2 ribbon is typically 10 nm thick. 

 



 

9. Conclusion and Outlook 

The review has shown the humble beginning of the ultrasonic spray pyrolysis: from the phenomenon of 
ejection of liquid droplets by high frequency sound waves called ultrasound since Michael Faraday to the 
highly sophisticated thin film and powder production technologies employing this phenomenon. Since then 
some theories and experiments have been performed to explain this phenomenon. One mechanism is the 
capillary wave mechanism where sound waves operate only on the liquid surface. Droplet size depends on 
surface tension, liquid density and the frequency of the sound. In the cavitation mechanism, sound waves 
may introduce turbulence in the bulk of the liquid leading to cavities which may also erupt to the surface in a 
random fashion but whose distribution is described by the Weber number, the Ohnesorge number and the so-
called Intensity number. In this case, the liquid droplet size, apart from depending on surface tension, density 
and frequency of the ultrasound wave, also depends on the viscosity and the stated numbers.  

We have also introduced the thermodynamics of how the droplet size should change when the temperature 
and pressure in the liquid changes in which case density, surface tension, density, viscosity and hence the 
Weber and other numbers also vary. The review also covers the applications of these phenomena which 
culminate into what has been branded ultrasonic spray pyrolysis. Publications reporting synthesis of various 
materials by this method are shown to increase very rapidly showing that there is this method is growing in 
popularity aroung the world. From the trend of publications per year, it has been demonstrated that USP will 
be a standard method in many labs in the next generations. 

The success of any user of this method will depend on the understanding of the dynamics of particle 
generation from droplet formation to the deposited particles which is lacking in many texts. 
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