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Abstract — This review outlines briefly the history of the pbmenon of ultrasonic
nebulization of liquids since the discovery of saaheffect by Michael Faraday and the
explanation of the phenomenon by capillary wave haeism and “cavitation”
hypothesis. Ultrasonic spray pyrolysis for matesiglrocessing and the theory that
predicts the final particle are discussed. The papty of the technique is shown by the
rising number of research groups in the world psiag various materials by this
method due to its cost-effectiveness, purity opricglucts and controllability of particle
size and final properties.

Keywords: Pyrolysis, Ultrasonic Spray, Surface Tension, @leal Vapor Deposition,
Viscosity

1. I ntroduction

Chemical vapour thermal deposition form one ofl#iigest groups of techniques for realising a veridt
materials in condensed matter science. The stamegrial is either a gas or liquid carefully chose end
up into a stoichiometric material desired. The gahprocess entails a source of chemical vapoupglets
which are carried into a heated zone for evaparadiod decomposition and finally ending up eitheraon
substrate (for thin films) or a filter (for powdgifsee schematic in Fig. 1]. When dealing with uaségases
as starting materials, the method is usually reteto as chemical vapour deposition (CVD); theeeraany
forms of CVD. The term “spray pyrolysis” (SP) isedswhen dealing with liquid droplets or powders as
precursor materials.

Droplet carrier gas system Exhaust system
Prccursor liquid droplect Thermal/non-thermal o roduct cﬁlection
Or precursor gas source decompositionreactor a cvstem e.o. filter heated
e.g. pneumatic nozzle, systeme.g. furnace, laser, St:/bstrate.g- !
ultrasonic sprayer e-beam

Fig. 1 Generalised schematic of chemical vapor siéipa systems on which ultrasonic spray pyrolysis
based

The word pyrolysis is taken from a Greek word “gyndnich means “a pile of fuel or pile of wood” with
specific reference to heating by flame [1]. Sinaehsheating raises the precursor material to andastate
where radicals, electrons and ions prevail, thec@ss can be used imsitu spectral analysis of elemental
composition of the precursors in addition to theamheposition mechanisms, reaction kinetics and ftiona
of new condensed matter. The source of heat carflmmace (thermal CVD), a hot wire/flament (HWCYD
HFCVD), an intense light source such an I.R.,Cf3er or a UV excimer laser (laser pyrolysis Lgtasma
source (plasma enhanced PE-CVD), an I. R. lamgpimiply, a heated substrate.



A number of previous review articles have beengrtsd on different forms of CVD: thermal CVD [2-
11], plasma enhanced PE-CVD [12-19], hot-wire ot filament (HWCVD or HFCVD) [20-28] and not
many of them have been as exhaustive in their céispeareas. Pyrolysis, although classified undéban
some text, has become a wide area of research eamthdlogy covering synthesis of new products,
gualitative and quantitative spectroscopic analgdifluids and, lately, alternative route to protioc of
debri-free x-ray sources; these aspects are elaoofarther in the sections that follow. In sprayqysis
the droplets or vapours can be generated eith@nbymatic nozzles in whistle-type sprayers or sdinéc
nebuliser.

In the former the process is simply called sprasolygis (SP) and in the latter case, the processnass
the name “ultrasonic spray pyrolysis” (USP). Arichet on the versatility of spray pyrolysis by Prairi@atil
[28] among other aspects tabulated publicationgougarly 1999 listing materials and spray pyrolysis
parameters. Other reviews have been on specifieriabt employing spray pyrolysis as one of the wide
range of methods used in producing such matesafserconductors [29], carbon nanostructres [30hme
nano-composites [31], diamond [32], semi-cokes,[8Bp semiconductors [34]. The present review @rapt
will restrict its discussion to ultrasonic sprayS®) technique on a wide range of materials espgdiaim
1999 to the present and on laser spray (LP) pyiolyBhis is a period that has seen a lot of impnoents to
pyrolysis techniques to the extent that structwrgh new shapes and novel growth dimensionalityehav
been produced in a controlled manner.

The scarcity of specific review papers in a petike this one where numerous publications pertgrimn
materials synthesis by various versions of pyrelysas the main motivation of the present compifatio
First, a historical outline of the droplet genasatphenomenon by ultrasonic nebulisation is gividns has
not been covered in most previous reviews excepXuig et al.[35], Barreraset al.[36] and Nevolin [37].
These reviews have not covered pyrolysis but esttithemselves to the nebulisation phenomenon. The
triumphs and challenges in ultrasonic spray pyislgse also presented. A tabulated literature suarel
data-base from 1988 to 2008 is given and some wEsgroblems in pyrolysis for materials processiiitip
regard to droplet and particle size under diffepmblysis parameters are discussed.

2. Ultrasonic nebulization phenomenon

Ultrasonic atomization is a very effective methad production of ultra-small droplets and, aftee th
droplets are pyrolyzed, the realisation of nanedimaterials. Quantum dots have been producedray sp
pyrolysis [38]. Three approaches are common indfaplet production: (1) passing the liquid across a
standing ultrasonic wave, (2) depositing the ligoikr an ultrasonic transducer and (3) immersing a
focussing ultrasonic transducer in the liquid isrsa way that the liquid depth is equal to the fféeagth of
the ultrasound lenses in the transducer.

Generation of droplets by means of ultrasonic wavas first reported in 1927 by Wood and Lomis [39].
A number of mechanisms have been proposed to exhia phenomenon. At low excitation frequencies (2
— 100 kHz), we can imagine that only surface mdksuespond to form droplets; such waves are called
capillary waves At higher excitation frequencies (0.1- 5 MHz) aintensities, bulk atoms of the liquids
come into play and this effect is calleavitation

2.1. Capillary Wave Mechanism

The capillary wave proposal enjoyed intense reseeterest from the first known studies by Faraday
[40] in 1831 to the present. It was Lord Kelvin,edgaborated in Rayleigh’s book [41] in 1871, whaoikd
the well-known equation for the wavelength of dapyl waves as

Here, A is the wavelengthg is the surface tensio,is the liquid density anflis the frequency of
the surface waves. This equation was later modifieRayleigh [41,42] to give



1/3
{3

Note thatF which is equal to s not the frequency of the surface waves bugerathe frequency of
the forcing sound. The fact that the frequency hef surface waves isalf the exciting frequency was
empirically obtained from experimental measuremeAts©iumber of experimental workers in the 1950's
[43-48] pointed to unstable surface capillary wawessthe origin of droplet formation relying on the
simplified linear instability analysis. The 1962peximental determination by Robert Lang [49] of the
relationship between the wavelength of the capileaves and the size of the droplets so formedreduhe
capillary wave mechanism to greater heights. Larayved that the droplet sizB,, and the capillary wave
lengthA were related by the empirical equation

D, = 034/ (3)

The subscripl in Eq. 3 signifies the Lang’s droplet diameterdistinction from other droplet diameter
symbols to follow. Extra support from Sindayiheb&aBolle [50] in 1998 brought more assurance that
capillary waves were probably the main mechanisimw Hirop formation may occur by unstable surface
capillary waves was illustrated schematically ggaduced in Fig. 2 and this phenomenon is usuallied
the Taylor instability [52]. In the Taylor instaityl the liquid capillary waves are composed of ts€peaks)
and troughs. Atomization takes place when unstabtgllations tear off the crests of the capillargwes
away from the bulk of the liquid. Thus the droplate produced at the crests whose size is propaitio
the wavelength.
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Fig. 2 A sketch showing idealized droplet formatfoam standing-wave crests showing one period df wa
vibration.

A major revision to the Lang’s equation was dondbgkin & Raco [52] in 1963 and later, 1996, by
Jokanovicet al. [53] who, rather than adopting an existing empiriequation, chose to derive a general
equation from first principles. The analysis espligiby Jokanovicet al. started from applying the
Bernoulli's equation to an incompressible fluiddensity, o, surface tensiong, under pressurg, due to an
ultrasonic excitatiorf, from a depthy, and thereby generating a disturbance of ampljtéde) given by

0 02
pgh+pa—f+a?f=0 (4)

In this equationg is the rate potential. The boundary conditions legexl were that wheyn = -h, v = Oand
22¢loxé = 0 then

# ==Y ot y+ o )

Here, c; is a constantk; was taken to be the wave-numb@r7D;) where in turnD; is the
Jokanovic’'s aerosol droplet diameter (again toirdisish it from that of Lang above). The Mathieu's



function was then adopted which was observed téagxghe typical shape of the relationship betwten
amplitude of the oscillation of the meniscus sugfaod the wave-number. The Mathieu’s function weasry
as

3
ﬂ+hk{£ht—kght}y=0 (6)
dt Yol

The solution of Eq. 2.6 fdn >> &(x,t), that is, for small disturbances, found bkalwovic was seen
to be similar to that previous found by Peskin &Rasing a different analysis route (not reproduuver)

o 1/3 1
DJz[FJ =@DL (7)

Note that the relationship between droplet diamater the Kelvin relation for capillary wave length
can also be derived from dimensional analysis as/shn by Mwakikungaet al. [55] given as

1/3
D =ky [i] ®8)

whereky is a dimensionless constant which according togLian0.68t"% while, according to theoretical
derivation by Peskin & Raco and Jokanovic, the tomsy is equal tat'>. This means the droplet diameter
as calculated by Lang’s equation is smaller byftator of 0.68 in comparison with that determingd b
Jokanovic’'s equation. Jokanowt al. were able to show experimentally that their frgskérived equation
yielded better agreement between calculated andriementally determined droplet sizes. It must dso
noted that Jokanoviet al. have arrived at Eqg. 7 using various forms of ttpgation of motion of the liquid at
the surface including one given by [54]
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However, a number of more recent studies employitigsonic spray pyrolysis (an application to be
discussed in the next section) and using eitheiLtmgy’s empirical formula (Eq. 3 and/or the Jokansv
revision Eqg. 7) have shown that both equations Hamigations. A serious conflict between theory and
experiment reported by Nedeljkovit al. [56] states: “Comparison of the theoretically £ 195 nmd, =
132 nm] obtained results with the experimentallyed®mined fi.,, =286 nm] regardless of the equations
being used for the determination of the aerosolpldte diameter undoubtedly shows that there is a
substantial difference between the theory and ttperament, if the theoretical density of the pdetc
packing was assumed...” And also according to Sape@tjial. [57] “Significant differences between the
experimentally determined (285 nm) and the theca#lyi predicted values of the mean particle diamete
(132 nm and 195 nm) were found indicating thatpgbwder was highly porous...”

The reasons for this gross under—estimation byheery of the experimentally determined particle
size could be (1) the basic assumption in the IRel@velength on which both the Lang’s formula amat t
of Jokanovicet al. are based and (2) the absence of the dependedeeptdét size on liquid viscosity and the
volumetric flow rate which is contrary to experint@robservations.

This calls for the consideration of the liquid'slbyproperties in the models. These shortfalls are
discussed in the unsolved problems in USP in sectio

2.2. Cavitation Mechanism

Cavitation hypothesis is generally applied to Higlguency and high energy intensity systems. When a
liquid is irradiated with an intense ultrasounddijecavitation bubbles are formed. During the ingple



collapse of these bubbles near the surface ofigh@l] high intensity hydraulic shocks are genatatdich

in turn initiate disintegration into droplets. Atch large intensities the excitation is beyondlidngd surface
but extends into the liquid bulk contrary to theitdary hypotheses. Properties of the liquid bulicls as
viscosity come into play as parameters affectimgrthture of the final droplet. Sollner [58] waskmbly the
first in 1936 to explain Wood & Loomis’s ultrasonatomization demonstration in terms of cavitation
produced under the liquid film. While Lang and thteer workers developed the capillary hypothesis, t
cavitation hypothesis was almost abandoned thamkknadiosynats and co-workers [59,60] who resumed
this area in the mid-60's. Several studies aftesdhtried to combine both hypotheses [61-64]. Tieeteof
viscosity and surface tension on the Taylor inditgbhas been studied [65], that the rate of growth
amplitude disturbance is affected by viscosity ib@sn observed [66], the increasing importance sxfosity

as surface tension decreases has been suggesteadehe effects of density, viscosity, interfadcension
and relative fluid velocity on drop formation haleen elaborated by Clark [68,69]. Another empirical
equation for the prediction of the droplet sizenah liquid flow rates was proposed in 1978 by Mdeh
[70] as

0354
D= 317(%] 4103030 0139 (10)

In this equationg and p have the usual meanings,is the viscosity an€) is the volumetric flow
rate of the liquid. However, this equation does amtount for the excitation frequency. Clésknd that the
dependence of droplet size on viscosity roughlpfetd the proportionality

D= U 0166- 0303 (11)

Tsai et al. [71] found in 1996 that droplet size and volunmetflow rate were correlating
approximately thus

D = Q 025030 (12)

This was quite in conflict with Mochida with his gonent being outside the range set in the €sail.
improved measurement.

2.3. A Combination of Capillary and Cavitation Hypothgse

More careful observations have shown that aparnhftbe traditional parameters of surface tension,
viscosity, density, forcing frequency and volumeftow rate additional parameters such as geonafttige
vibrating surface, the amplitude of the oscillaipthe intensity of the ultrasound power or thergne
density have a lot to do with the size of the deogb produced. To this end Rajan and Pandit 72906
developed a new correlation equation to take imwoant some of these extraneous parameters and was
found to be

13
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0.

The symbolsA, We Oh, Iy are respectively the surface area of the drofiletWeber's number (the number
that describes atomization), the Ohnesorge’s nurfdrethe viscous number) and the intensity number (
number affected by the geometry of the vibratingsme) defined in the following expressions:

_fQp
We= o (24)



oh=—£
f.Am0
f2AL

v.Q

In

(15)

(16)

Most symbols have usual meaning Buh is the amplitudeys is the speed of sound. Three alternate
correlations to Eq. 13 were derived by Rajan amitlR§72]: (1) using the Rayleigh instability criten, (2)

using the Walzel relation and (3) using Davies apph respectively
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A parity plot is one of the most convenient graphitechniques for evaluating the theoretically
calculated quantity and the experimentally obseryeantity. Rajan and Pandit [72] also presentedtypar
plots for correlations in Eq. 13 and Eq. 19 andemoduce them in Fig. 3
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Fig. 3 Plots for correlations Eqg. 13 and Eqg. 19viater droplets. The dotted line is a line thaidates the
points where calculated quantity is exactly eqadhe experimentally measured quantity.

From the parity plots one sees that most pointsbatew the equality line signifying that the
measured drop size is mostly less than the cadmidop size. This means that the Rajan-Panditlations
are over-estimating the observed droplet size.

Avvaru et al. [73] have recently, in 2006, modified Eq. 13 tdt sie so-called “Newtonian viscous

liquids” given as

2
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(20)

In order to validate their theory, one of the Newam liquidsUJ glycerinel was used in their study and
the parity plots done using correlations in Eqah8 19 were presented and are herein reprodudeid.id.



In comparison with the Rajan-Pandit parity plotegacan clearly see a remarkable improvement in the
alignment of the calculated —experimental pointh&equality line.
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Fig. 4 A typical parity plot for a Newtonian liquidlycerine (From Avvaret al Ref. 117).

However, one can also see departure from the etpadlity line when droplet diameters exceed {60
Therefore beyond this point the Avvaru correlataer-estimated the droplet sizes. Also even withi
region where there is apparently good agreemente points are above the equality line indicatinat,tim
this region (200 — 35Qm), the Avvaru correlation undegstimated the droplet size. Overall, however, the
Avvaru correlation is a big improvement over thBRajan-Pandit. Avvaret al. are also able to confirm and
demonstrate the presence of cavitation in the dtagéction by arranging an ingenious experimanthis
experiment, the ultrasonic generator is tilted fmmtally and the force of droplet ejection is bakh with
the environmental drag force from which the ejactivelocity is determined. Using their so-derived
differential equation, they are able to show ttmt Newtonian liquids such as glycerine yield arctae
velocity of 12.6 m& whereas the non-Newtonian liquids yield an ejectielocity of 3.5 ms. In both cases
the ejection velocity is higher than the cavitatiess ejection velocity of 0.144 thsvhich is attributed to
capillary theory.

3. Effects of Pressure and Temperature on Surface Tension, Density and Viscosity of Fluids

With improvements of the theory, it is hoped thag¢ future is bright with regard to understanding th
phenomenon of ultrasonic generation of droplet frbquids. One of the many unsolved problems
concerning the droplet size as a function of theitl properties of surface tensian,viscosity,y, density,p
and so forth involves finding from thermodynamiassthese properties vary when the liquid tempeeatur
and pressure change. In Mwakikungfaal. [Ref. 55], such a temperature—and—pressure depteddeplet
size was dealt with by considering that droplee dzok the expression in Eq. 8. Eq. 20 could alsaeh
written in the like manner as

:( ﬂU’(p'T) ]1/3
p(p.T)f? (21)

+0.0013We(p,T)) ®*%(Oh(p, T)) %" (1 (p,T)) %

3.1. Surface Tension as a Function of Temperature amrdd$tre



One of the earliest experimental studies on surfaasion determination at varying pressure wasezhrr
out by Lynde [74] in 1906. In this study the sudatension at the interface between two liquids was
determined via the derived equation

ocosf = % H Drtube(pz - pl) (22)
@ was the angle of contadt, was the difference in height between the two tiguin the manometer,e

was the radius of the capillary tube apg o were densities of the two respective liquids. Tgka
differential of Eq. 22 with respect to presspré.ynde got

o0 _ 4 Hp 1 [5,02 501]
— =druelos - + 2 Hplupe —=% ——+ 23
» 2 tb(pz pl) » 2 D'tub » ® (23)

By dividing Eq. 23 by Eq. 22, Lynde arrived at thBowing expression

11, 1 (% &) 24)
od Hp d p-p P

The first term on the right hand side of Eq. 24 wa=asured experimentally by observing the change in
height at varying pressure. The second term wasmated from compressibility factors of the twoulids

at varying pressure sincig/dp is compressibility factor in the first place. Wittiese measurements, Lynde
was able to establish that a plotdtdai dp) versusp was a positive linear graph for mercury—water esyst
and for mercury—ether system. The same was a meghtiear plot for water — ether system and for
chloroform—water system. However, for the carbosudphide — water system a parabolic line-shape was
obtained. These results showed that the surfagioterpressure relation depends on not only onitjuédl
types but also on how the liquid densities vanhvgtessure which is discussed in the next few pdgas

the case where the @(ddl &) versusp graphs are linear,

150
190 _ 4 25
o TP (25)

k. is a proportionality constant Pa® Surface tension can then be written in termsre$sure as follows:
o(p)= g explt 1k, p? - p2)) (26)

O is the surface tension at atmospheric pregggurBachset al. [75] in 1995 summarized atFp data from
methane-water system up to that time [75-79] aed thharts are reproduced in Fig. 5

For one to see the effect of temperature on sutiaoperature, one can turn to the important worg.af.
Palmer [80] in 1976. Palmer’s theory based ortl{&)calculation of the difference in energies eéliaction
between molecules in bulk and those on the suidaéexcess energy’ (2) the minimum potential enenfy
these molecules due to a balance between attrasityeepulsive forces at a critical temperaflire
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Fig. 5 Pressure and temperature dependence oftitfsEes tensioro in the system methane-water; all data
published in Ref. 119 until 1998, Ref. 120y, Ref. 12171, Ref. 122 and o, Ref. 123.

The derivation led to the following expression:
N 2/3
o—(T)-;%n(ﬂj kelT. -T) (27)

Wheren andN, are the co-ordination numbers or the number ofestaneighboring molecules around one
molecule in bulk and on the surface respectivplis the density of the liquid/l is the molar mass of the
liquid andkg is the Boltzmann’s constant.

It was shown in Mwakikungat al. [Ref. 55] that based on fundamental thermodynanifes general
relationship between surface tension and temperaugiven as [81-83]

_y 190
o(T)=H TOIT (28)

where H is the energy required to increase the @frélze liquid in contact with air by a unit ardashould

be noted that H is always positive. Sincealways decreases as T increase, in accordancevétsahe
Palmer equation in Eqg. 27, then the derivate’dT is always negative. It can be shown that Eq. 28esa
the same meaning as Eq. 27 withe (n/4)(Noa@M)**ks T, andda/dT = -(n/4)(N,dM)**ks. Based on the two
separate relationships of surface tension as aifumof pressure according to the current geneatiin of
Lynde’s empirical study and temperature from Palsndreory, one can write a combined relationship as
follows

o(pT) =%r{%}2/3ks(ﬂ ~T)op explt Lk, (p? - p2)) (29)

However, from Lynde’s experiments, it is difficud ascertain therp relationship since the nature of
dependence is also dependent ongipedependence which was not yet known but which bellshown in



the sections that follow. Also in Palmer’s theatgnsity of the liquid is assumed constant with terajure.
However, so far this could be the only equatiort ttambines the effect of pressure and temperatare o
surface tension.

There have been other recerfp,T) equations specific to some materials such as rleeby Park and co-
workers [83] who showed empirically the effect afface tension of polystyrene droplets in supeoait
carbon dioxide which was found to be

o(p,T)=387032-0.0559" - 001p + 2596x10°° pT (30)
And which was true only in the temperature rangenfi. 70C to 210C and from pressure of 500psi to 2500
psi. Their experimental results ap,T) were plotted on a chart which is reproduced in Eig
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Fig. 6 Surface tension as a function of temperatun@ pressure for glycerine [From Partkal, J. Phys.
Chem. (2007)]

An article on surface tension given by Escobedo &nlbori (1996) [84] based on the 1923 proposal by
Macleod that surface tension of a liquid could kpressed in terms of its vapoprand liquid g, densities
thus:

o=N(p-p,) (31)
wherefll is called the parachor. Although it was thoughbéoa constant but, lately, it has been realizatl th
parachor is in turn temperature dependent sinde fioface tension and density are temperature depéen

From statistical calculations, Boudh-Hir & Mansodfi990) [85] derived an expression fbr of the
following nature:

(32)




whereB is an exponent, the subscrptenotes the critical temperature valuess the activity,/ is the
chemical potentialh is the Planck’s constant addr, o, ) is a statistical-mechanical function that shows
liquid surface tension dependency on its liquidestand vapour-state densities and temperature.

Another theoretical and empirical study of the aceftension data by Pandey [86] of ternary liqyistemm
comprising liquid nitrogen, liquid oxygen and liguargon revealed the relation to take the formlatiom
developed by Brock & Bird in 1955. This expression non-polar liquids was derived by utilizing the
power law concept applicable to temperature awam fthe critical point and is here given by

11/9
ofT)= (PCZTCZ)US[ 0;‘32— 0951j[1—TlJ (33)

C C

P., T. andZ; are respectively critical temperature, pressucecampressibility factor.

3.2. Liquid Density as a Function of Temperature andsBtge

When one needs to consider the effects of pressudensity, thermodynamical equations of state (EOS
are used. Wongt al. (1996) [87] used the van der Waal's EOS to stidydressure and temperature effects
on density of liquid lubricants. They found thahdity increases with increasing pressure but dserapon
a raise in temperature as confirmed by their erpanis.The van der Waal's equation of state for a real
gases was used to find tp,T) expression which was used to modify the dropleiaéqn in Eq. 8 [55].
An improved and more appropriate EOS for liquidswaoposed by Redlich & Kwong in 1949 [88] that
accurately predicts densities of fluids thus

o= RT ___a0°
1-bp TY2(1+ pb) (34)
p = 0B66RT,

P

c

ois a parameter which further depends on temperaBy findingo as the subject of this equation,

ap° +a,p* +azp+a, =0

a; =ab

a, =RT¥%+ pT¥%? -2 (35)
a = RT¥?

a, = pTY?

one can find the expression of density as a funatiotemperature and pressure by solving the Ecarigb
this variation of density is sketched in Fig. Yd4ad (b)
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Fig. 7 Plots showing how density varies with (a@gsure and (b) temperature from Eq. 34 (Densityesal
are not realistic and are not specific to any nigler

3.3. Effect of Temperature and Pressure on Liquid Viggoc

The principal observed qualitative facts are thaia{l gases at ordinary pressures become moreusdsas
the temperature is raised, (2) most liquids becdess viscous as the temperature is raised, (3)lyhigh
compressed gases resemble liquids, they becomeisessis and (4) for a few liquids (such as ligoadium
and liquid sulphur).

There is a range of temperatures over which theosity increases as the temperature is raised.a&she
case with surface tension, the variation of vidyosith pressure is expected to be one of the seeature.

It is known from Wright [89] that, as early as 188&ynolds proposed an expression for the change of
viscosity with temperature for liquids and compeesgases given asexp (const/T). This was based on
the observation of the similarity of viscous flow diffusion (diffusion coefficient is given by being[]
exp(const/T and also by regarding the flow of molecules easth other as analogous to a chemical reaction
(the effect of temperature on the rate of chemmeattionR being alsd] expE/RT) where E is the activation
energy). The general form of the pressure [90] tamdperature [91] dependence of viscosity has been



known for at least 50 years. Viscosity is how knawrvary with temperature in a greater than exptaken
manner and temperature -viscosity equations gdyesadlow for an unbounded viscosity at some
characteristic temperature. At high pressure, thessure-viscosity response is likewise greater than
exponential, often following a less exponentiapsse at low pressures [91].

Fein [92] considered that the low shear viscogitywas an exponential of fluid density. Later, tlee s
called “free volume model was developed [93]. Aceisity model that can describe the temperature and
pressure response is the pressure modified equiaticrduced by Yasutomet al. using the free volume
model [94] given here as

~23(T~(T;o+ A In1+ A,p))(1-B; In(B; p))
C2+<T_(TQO+A1 |”1+Azp)>(1_51 In(B,p)) (36)

#(p.T) = pge

Uy is the viscosity at a glass transition temperalyrgiven by the expression in the triangular brackete
expression in curly brackets is the relative frebume expansivity andy, A, By, B, C;, C, and Ty are
parameters that are determined by fitting Eq. 3&jmerimental data for a specific fluid. Eq. 36 gesfs that
increase in pressure raises viscosity whereasatbe in temperature drops viscosity as shown in8ig
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3.4. Final Droplet and Particle Size Formula

Every ultrasonic transducer/nebulizer generatesihtmathe liquid which it is intended to produceplets
from. Since ultrasonic spray pyrolysis set-ups atesed systems, an increase in the temperature
accompanies an increase in pressure. The subsemoeeases in temperature and pressure affect the
density, surface tension and viscosity. As such dheplet size, which is heavily dependent on these
parameters, is also affected. In this sectionsthdy on how these changes in temperature andupeciss



the precursor liquid would affect the droplet semed hence the final particle sizes after pyrolyeie
consolidated.

From sections 2.1 to 2.3 is seen that all the tlpaemeters decrease as temperature is increased.
However, as pressure is increased, only surfacgaierdecreases; the other two parameter- density an
viscosity- increase.

| w(pT) 13 .
0 _(p(p,T)-f 2]
[1+ 0.0013(W€( p,T)) ooos(Oh( p,T))_ 0.14(I | (p,T))_ 028]

(37)
We=_20(P.T) (38)
a(pT)
_ U
oh= f.AMp(p,T) (39)
_ f2Am?
Iy = V.0 (40)

After substituting the pertinent parameters, theplit size can be written in terms of the tempeeatind
pressure dependent liquid density, viscosity amthse tension from Egs. 29, 35 and 36 as

0008
o 1/3 (0’)
_ ~4
D = 114x10 (;] + 00212 (41)
H
P



1100 |
RN (a)
~ 1000 |
£ |
%0 900 |
2 i
'Z 800 | o
= _
o I
700 | \
600t e
300 350 400 450 500
temperature {K}
1.6 10~
E14x107 (b)
] L
N -
A 1.2 x107°
B :
& 1x107°
a - _
8X10_7j. e \
0 100 200 300 400

Liquid Temperature (K)

Fig. 9 A plot showing the variation of density (B%) and droplet size (Eq. 41) with liquid temparat

The density-temperature function was adopted fieRedlich-Kwong equation in Eq. 34, surface temsio
was taken from the presently derived expressiomftgynde and Palmer theories given in Eq. 29 and
viscosity-temperature profile was determined froqm 86, plotted in Fig. 9, shows the variation cbplet
size as a function of liquid temperature. The debpize decreases as temperature is increased.

The small changes in liquid pressure in a typigablysis session lead to very small changes inaserf
tension, density and viscosity and hence on th@lercsize. The droplet-size versus liquid pressare
therefore not shown.



4, Theory of Pyrolysisfor Predicting Final Particle Size

Pyrolysis is an application of the phenomenon afptbt generation from liquids by ultrasound wawués.
involves materials deposition by carrying the soduced liquid droplets into a heated zone where the
droplets undergo (1) evaporation, (2) decomposit®)rreaction into new products and (4) condensatio

the new product onto a filter or a substrate [E].

Tube furnace

>

€ Pre-cursorsolution
//’—\

= Ultrasonic nebulizer

Fig. 10 Simple schematic of ultrasonic spray pysyshowing an ultrasonic nebulizer immersed in the
precursor solution where droplets are generatedrandport into a tube furnace for eventual pyrislysd
deposition onto substrates.

The theory of transitions of the liquid precursooplet of initial diameterD, in the heat field and the
consequent transformation into a new material @ardf diameted is simple. During the preparation of the
precursor solution suitable for spray pyrolysigracursor material of mass, is dissolved in a solvent so
that if the concentration of this precursor in sioévent isc,, then

My = Cpr 27D° (42)

D is dependent on both frequency of the sound ama@dhcentration of the precursor [348] as showthen
previous sections and as illustrated in Fig. 1hwldta taken from Gurmen’s group [348,353,391]
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After pyrolysis—dissociation and decomposition € fhrecursor material, a remnant of evaporation, is
further reduced to the final particulate of massnpplus other species that mostly are in gaseous atat
hence evaporate off without depositing. The paldieumass after assembly can be written as



(43)

M, andM,, are the molecular masses of the final particle taedprecursor material respectively. Assuming
that the initial liquid precursor droplets and fiveal solid particles are spherical Eq. 42 and £&8j.can be
combined to give

M

2m,d®=—"Lc, 2D° (44)
M

d is the final particle diameter. This simplifiesttee following equation

1/3
a=p| =M (45)
ppM pr

Eq. 43 has been widely used by a number authorsogimg ultrasonic spray pyrolysis in production of
nano-particles to predict the final particle sizes.

5. Popularity of Ultrasonic Spray Pyrolysis

USP as an application of the ultrasonic dropletegation phenomenon has attractive features, like th
traditional spray pyrolysis, of simplicity, econamviability, high deposition rate, possibility obating over
large areas and continuous operation [55]. Butkantither commonly known pneumatic atomizers, it has
been described to possess the advantages of “...icdlepurity and stoichiometry” and allows a narrow
distribution of particle sizes. A large proportiohthe droplets is below 20m and these are produced with
low in-flight speed. This prevents the dropletsnirbeing removed from the gas phase by impact dw&o t
walls of the reactor and through droplet-to-droptellisions and consequent coalescence. The major
disadvantages are potential for hollow structurefractured particles which could be good for other
applications and that the droplet production ratgypically low and highly dependent on the thrqugthof

the nebulizer.
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Fig. 12 Growing popularity of ultrasonic spray plysis as measure by the number of publicationsrigaiu
papers and conference proceedings) released pesigea 1988 [96-512].



Since there are numerous publications, in the gdram 1988 to the present (more than 730) [96-542]
materials processed using ultrasonic pyrolysisydas seen as convenient to plot a time series gaaph
illustrated in Fig. 12.

6. Parameter Optimization in USP: Droplet Residence Time

One of the most important parameters for optimiatbf ultrasonic spray pyrolysis is flow rate okth
precursor droplet. At extremely low flow rates, theoughput of the USP system is small at the heoéf
obtaining truly nano-sized, nano-structured and metely-decomposed targeted materials. At extremely
high flow rates, yield is high but complete decosifion of the precursor is compromized as the mxid
time of the precursor in the heated zone is sralloptimum flow rate is therefore necessary to imbeth
high yield and pure materials. The relationshiprisidence time can be easily shown tal@dL are the
diameter and length of the reactor respectively @nds the flow rate of the precursor assuming that th
velocity of the carrier gas is the same as theciglof the carried precursor droplets.
L
tresidence_ K
0

(46)

In the real case where the above assumption ddespply, temperature, T, and pressure, p, of tiséesy
are taken into account. In this case then the egfme for residence time is given by C. Mickehl. (2006)
[191] as

LR\ T,
tresidence: K(FO](?OJ (47)
0

To is room temperaturd), is the atmospheric pressure. In order to maxirmpiz@ne can increase to the
maximum possible length. Increasihghas the disadvantage of an uneven temperaturdeposer a long
distance.

One then needs to have several short heating zohese temperature profiles are constant and
manageable. Since the nature of products from U&gerdls in part on the control of the furnace
temperature, Taniguchi and co-workers [137, 142 18%182,187,250,263,303,310,327,387] have made an
elaborate setup with a furnace having several iganes. A typical example of such multi-zone &oes
was well illustrated by Taniguchi’s group [137].i3ls illustrated in Fig. 13
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Fig. 13 A typical example of an ultrasonic sprayagbysis employing a multi-zone furnace for contodl
product shape, particle size and other paramekmn Taniguchi’'s group.

7. Various Forms of USP

Worth noting are a few USP set-ups that have a#daattention through the years and the novel nano-
structured materials they have produced. A setuBMR Rao’s group illustrated in Fig 14 had an irges
provision for constant precursor liquid level agestn the usual USP components [97,99].
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7.1. Asynchronous Pulse USP

The asynchronous-pulse ultrasonic spray pyrolySiIUSP) is another interesting design suitable forgh

of stacked films or controlled doping and developtmef superlattices [106,157,158,160]. In APUSPg tw
more ultrasonicator-containing chambers are haededSach chamber contains the appropriate precursor
solutions that are to be deposited — the host haddopant etc. The “sonicators” in these chambers a
controlled by a pulse generator one at a time iasgmchronous manner. The period of each champelss
determines the level of doping, or the thicknestheflayers in the superlattices.

In a typical APUSP (Michel Lopez and Zea 2006 R®&fl) an inert gas is first introduced to the reacti
chamber at relatively low and steady flow rate &wut 30 minutes to drive the air out. The nebdlise
solutions — precursor and dopant are deliveredastibstrates in pulses through the nozzles.

Each spray lasts 5 seconds for both but aftergheeyof the dopant is conducted, a delay of 2-43es
was employed to ensure that the introduced dopastasmpletely decomposed before conveying a pulse
spray of the host. The deposition is carried outeépeatedly performing these spray processesoht18-14
s for each cycle and the deposition time lasted $0+30 mins for the preparation of one sample.

An appropriate interval between the pulse spraglagant and host solutions play an important role in
depositing high crystallinity films. There are casehere the precursor liquid to be sonicated pabseagh
the ultrasonicator and introduced from the topeathan from the bottom.



This design has the advantage of high yield ofl filesired product. However, introducing dropletsir
below has the advantage of selecting on the smaplets with most of the large one returning to the
precursor under gravity. In both the Leeal. (1998) [106,157] set up and that of Patil & P&2000)
[73,104,120,124,374,375,430,439,492] the substnate its own special heater apart from the standard
furnace. Contrary to heating substrates, Kang & kPar (1999)
[113,114,118,145,161,170,176,178,198,239,262] jselthat subjecting the particle collector to entsd
such as liquid nitrogen helped prevent Ag nanoigarfigglomeration and they become well dispersed i
Zn0.

Note that in their USP design, they included a terapre controlling water bath around the precursor
container to prevent changes in temperature ansspre which in turn have an effect on droplet sige
shown in the previous sections.

7.2. Electrostatic Nebulizer USP

Recently, another innovation to USP [Zacetkal Ref. 206, Cheret al Ref 240, 249, Chang &
Hwang, Ref. 304, Biet al Ref. 332, Leeet al, Ref. 458 and Miret al Ref 502, 503] has been the manner in
which droplets are produced from the precursoidig@part from spraying with ultrasonic nebuliseitd)as
been realized from the days of Lord Kelvin thatapplying a high potential difference to the liqguface
makes such a surface erupt into liquid dropletseléttrostatic assisted USP (EAUSP), a high tenision
applied between the liquid and the substrate. Theeecases where the precursor liquid to be sadcat
passes through the ultra-sonicator and introduaed the top rather than from the bottom

This design has the advantage of high yield ofl fitesired product. However, introducing droplets
from below has the advantage of selecting on thallsinoplets with most of the large one returninghe
precursor under gravity. If a liquid is forced tovf through a small nozzle which is subjected tcebattric
field, the liquid will exit the outlet in differentorms or modes as a result of different electraalyic
mechanisms. These modes include among others mgippbde, cone mode, cone-jet mode and spindle
mode [Zaoulet al, 2000 Ref. 206]. The kind of mode the spray digpldepends on the electrical potential
applied to the nozzle, the flow rate, the condutgtiand the surface tension.

For film deposition, the cone-jet mode is the nmstable, it is a continuous mode and the formation
of a homogeneous fine spray is possible. In thigenthere exists the so-called “Taylor cone” with3
half angle at the apex of the cone (see Tayloabilitly in the previous section). This cone is exted by a
jet which breaks up into spray droplets to genesataerosol of the precursor liquid. Chetral. [140] final
particle morphology has large particles and latgkeks. This could be due to agglomeration of dropte
they descend.

The best way to select only the small dropletoifidve the substrate above the spray. The large one
cannot make it to the substrate and thereforeaaced to return to the ultrasonic nebuliser. AsZaouket
al., the potentials need to be optimized for self mkde.
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7.3. Infrared USP

An interesting USP system employing a novel heatimgrce was reported by Matsuzaki and co-workers
[117] when synthesizing yttria stabilized zircomién films. Their substrates temperatures were rotiatl
by heating a “susceptor” with an infrared radiati@ater.

The substrate temperature could be tuned from 818 K023 K. It is interesting to note that grainesi
increases with substrate temperature, the Arrhgrlaisshows that the activation energy for yttitiabdized
zirconia is about 68 kJ mibland grain size increases with increase in depasitite. The particles obtained
by this work were rather large in general. Thisldobe due to (1) agglomeration at higher substrate
temperatures an effect known as the Oswald’s nje(®) spraying from the top as alluded to before.

The Ostwald’s ripening observed here should beindsished from the opposite effect which was
observed recently and reported in Mwakikuegal.[55,243-247,333,511].

Mwakikunga et al. found spheres of W obtained from USP to shrink in diameter as thendoe
temperature was increased without heating the aibstwhere the perfect sphere would land. In &ése of
shrinkage in diameter as a function of surroundamgperature, it was found that the data was ineageat
with the Tiller equation given as

40.Qy
= - 48
¢ RTIn(p/ p j (48)
Oe is the interfacial energy between the nucleatirdemials and the surrounding environment épdis the
molar volume of the nucleating material. A numbéraathors have used this equation in explaining the
growth of nano-wires by chemical vapour deposifibemn et al, APL (2003) Ref. 148]

7.4. Flame-Assisted USP

An interesting kind of pyrolysis is called flamese$ed USP (FAUSP) [108,130,159,208,209,241,344].
FAUSP was developed in the 1980’s. It operatesfgciing the spray of a precursor solution obtaiftech
an aerosol generator into a combustion chamberener individual droplets are rapidly combustecelFu
such as natural gas or hydrogen is introducedderaio generate the appropriate high temperatnrgoiine
case, instead of external fuels, flammable alcotsdiutions are used as precursors.
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8. Mor phology, Structural and Other Properties of Materials Obtained by USP

8.1. Solid and Hollow Spheres

The spherical shape of the particles definitely esrfrom the spherical droplets from the precursprid.
When scanning electron microscopy is performed lwsd particles one can see the manifestation of
spherical daughter particles from mother sphetigaid droplets. The particle size may be less tBam
[see Fig. 18 from Okt al Refs. 169,176,184,198,199,202,227,239,432,438} fte four SEM micrographs
(a) but at higher magnification with TEM (bottonghi) the morphology changes to one showing that the
spheres are composed of numerous crystallites wéimseas determined by the Scherrer equation from X
ray diffraction shows they are nano-crystallinee Tnystallite size increases as the calcinatiompégature
is increased. Bucko, Ref. 209]. This is equivatenicreasing substrate temperature and therelgasing
particle and crystallites sizes as seen above. Menyvehis is to be contrasted from the in-situ aom
temperature increase which has the reverse effatgareasing the particle and crystallite size tasas in
Fig. 20 [from M Yuaret al. (1998) [Refs 108, 112] also found hollow spheré&rvpreparing zirconia and
yttria-stabilized- zirconia (YSZ) fine powders biarhe- assisted ultrasonic spray pyrolysis. This was
attributed to the presence of nitrates in the psemu

Prior to this study, Messingt al. [96,98] had studied the spray pyrolysis of nitratdutions and
proposed a mechanism to explain the particle mdogiyo During the pyrolysis of spray droplets in the
flame, the evaporation of the solvent and the reafttecomposition of the solute proceed successivein
the outer part to the inner part of the droplethieW a nitrate solute with a relatively low meltipgint is
present, it melts to fill the pores of the strueturhe molten salt will inhibit the removal of thr@pped
solvent in the inner parts of the droplets as altes the reduction of the gas permeation. Thaketo a
build-up of internal gas pressure and, finally, legfn or foaming of the particles to form hollowrficles
or particle fragmentation with a broad size disitidn.
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Fig. 19 (a) and (b) SEM images of hydroxyapatitegHpowders by the USP/SAD method showing the
gaping hole in one of the spheres in (b) an inthoabf the possibly hollow nature of these sphéFegem
G.-H. An et al, Mater. Sci. Eng. (2007) Ref. 163] (c) More viydoof of hollow NiO-Srg,Cey 01
composite spheres [S. Sued al, Solid State lonics (2006) Ref. 196] (d) and (€RTHEM image of
LiFePO4/C composite prepared at Z5&howing a shell structure and the intersectiothefshells of other
spheres [From M. R. Yang, J. Power Sources (20@8) 701,204] (f) A conceptual model proposed by
Yanget al.(2006) on how the hollow LiFePO4/C composites fovith or without voids.

Intensity (a.u.)

10 20 3 60 70

0 40 50
2 6 [degrees]

Fig. 20 Examples of XRD, SEM and TEM micrographs Ld¥in,O, particles prepared from various
precursors (1) dense LiM@, with porous surface structure (2) hollow Lib@y particles with hybrid
surface structure (3) hollow LiM0, particles with smooth surface structure and (4jokoLiMn ,O4 with
shrinkage surface structure. From Matsuda & Tartigudournal of Power Sourcg2004)

8.2. One-Dimensional Nanostructures from USP: Nanowik&moribbons, Nanorods

Of interest, apart from the production of nanodphkets by ultrasonic spray pyrolysis, has been the
attainment of one-dimensional structures. Manyhef one- dimensional structures have been micratsize
such as the ZnO nanorods grown almost at righteantgl the substrate surface [212,214,233] as slmown
Fig. 21. This one-dimensional growth only happenspacific conditions. Note that as furnace temipeea
is reduced that micro-rod diameter decreases.

Another interesting case of one dimensional groviyh USP was observed by Htagt al.
[242,254,317,367,477] who reported micro-sized gidas, wires and tips of ZnO obtained at controlled
conditions. Temperature of synthesis was foundittate the morphology of the micro and submicron-
structures that they obtained. In this case diffefiernace temperatures yield different structureds, wires



or platelets. One-dimensional growth from spherésWi; which transform themselves into
nanowires after thermal annealing at %D argon for 17 hours [Ref. 243-247,333,511] hesn observed.

Recently dense one-dimensional nano-ribbons of §@wn by USP at 76C in argon carrier gas without
the need for thermal annealing [Fig. 24 and 25Jewadso observed [unpublished]. Their electroningition
temperature at 7 was confirmed using a four-point probe technidtievas found that for the same
synthesis conditions, furnace temperature, precufieov rate etc, vanadium oxides yielded mostly
nanobelts, nanoribbons and sheets where tungstgesosshowed nanowires and nanorods.

Fig. 21 SEM images of ZnO microrods deposited by s (a) 558 (b) 500C, (c) 450C and (d) 408C
[From U. Alveret al, Mater. Chem. Phys. (2007) Ref. 233]
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Fig. 22 (a) SEM micrograph of Vano-ribbons (b) tilted ap= 54> (c) an EDS spectrum showing the V
and O peaks on a carbon adhesive tape substrat@site (thickness) distribution histogram (theks
determined front,= r%/singas illustrated in the inset of (d))

Fig. 23 Transmission electron microscopy (a) logotetion image (b) low resolution on a single ribl{c)
higher resolution on the edge of ribbon revealehyered structure: ¥0s and VQ and in some ribbons a
core-shell structure. (d) and (e) are SAED pattéons/,0s and VQ regions respectively (f) AFM height
image of a single Vonano-ribbon. The profile (g) shows that the M{bbon is typically 10 nm thick.



9. Conclusion and Outlook

The review has shown the humble beginning of theasbnic spray pyrolysis: from the phenomenon of
ejection of liquid droplets by high frequency soumdves called ultrasound since Michael Faradayéo t
highly sophisticated thin film and powder produntii@chnologies employing this phenomenon. Since the
some theories and experiments have been performedpiain this phenomenon. One mechanism is the
capillary wave mechanism where sound waves operdteon the liquid surface. Droplet size depends on
surface tension, liquid density and the frequenicshe sound. In the cavitation mechanism, soundesav
may introduce turbulence in the bulk of the liglédding to cavities which may also erupt to thdasu in a
random fashion but whose distribution is describgthe Weber number, the Ohnesorge number andthe s
called Intensity number. In this case, the liquidpdet size, apart from depending on surface tensiensity
and frequency of the ultrasound wave, also dependke viscosity and the stated numbers.

We have also introduced the thermodynamics of hmadtoplet size should change when the temperature
and pressure in the liquid changes in which cassite surface tension, density, viscosity and keihe
Weber and other numbers also vary. The review ets@rs the applications of these phenomena which
culminate into what has been branded ultrasoniayspyrolysis. Publications reporting synthesis afious
materials by this method are shown to increase ragigly showing that there is this method is grayvin
popularity aroung the world. From the trend of peddions per year, it has been demonstrated th&t Wi
be a standard method in many labs in the next g&éoes.

The success of any user of this method will depemdhe understanding of the dynamics of particle
generation from droplet formation to the depospadicles which is lacking in many texts.
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