Researchspace >
General science, engineering & technology >
General science, engineering & technology >
General science, engineering & technology >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10204/5802

Title: An interactive boundary layer modeling methodology for aerodynamic flows[Presentation]
Authors: Smith, L
Meyer, JP
Oxtoby, OF
Malan, AG
Keywords: Boundary layer modelling
Interactive method
Airfoil drag prediction
Aerodynamic flows
Issue Date: Nov-2011
Publisher: ASME
Citation: Smith, L, Meyer, JP, Oxtoby, OF and Malan, AG. An interactive boundary layer modeling methodology for aerodynamic flows. ASME 2011 International Mechanical Engineering Congress & Exposition (IMECE), Denver, Colorado, USA, 11-17 November 2011
Series/Report no.: Workflow;8586
Abstract: The authors propose to develop a new method to couple Drela’s twointegral equations with a generic outer flow solver in an iterative fashion. They introduce an auxiliary equation which is solved along with the displacement thickness to overcome the Goldstein singularity without the need to solve the entire flow domain simultaneously. In this work the incompressible Navier- Stokes equations will be used for the outer flow. In the majority of previous studies the boundary layer thickness is simulated using a wall transpiration boundary condition at the interface between viscous and inviscid flows. This boundary condition is inherently non-physical since it adds extra mass into the system to simulate the effects of the boundary layer. Here, the authors circumvent this drawback by the use of a mesh movement algorithm to shift the surface of the body outward without regridding the entire mesh. This replaces the transpiration boundary condition. The results obtained show that accurate modeling is possible for laminar incompressible flow and that the solutions obtained compare well to similarity solutions in the cases of flat and inclined plates and to the results of a NACA 0012 airfoil produced by the validated XFOIL code.
Description: Copyright: 2011 ASME. This is an ABSTRACT ONLY.
Appears in Collections:Aeronautic systems
Advanced mathematical modelling and simulation
General science, engineering & technology

Files in This Item:

File Description SizeFormat
Oxtoby_2011_ABSTRACT ONLY.pdf133.5 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback