Researchspace >
General science, engineering & technology >
General science, engineering & technology >
General science, engineering & technology >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10204/4423

Title: High-throughput SNP genotyping: combining tag SNPs and molecular beacons
Authors: Barreiro, LB
Henriques, S
Mhlanga, MM
Keywords: Single nucleotide polymorphisms
Human genome
Linkage disequilibrium
Molecular beacons
Issue Date: Oct-2009
Publisher: Humana Press, a part of Springer Science+Business Media
Citation: Barreiro, LB, Henriques, S and Mhlanga, MM. 209. High-throughput SNP genotyping: combining tag SNPs and molecular beacons. Single Nucleotide Polymorphisms: Methods in Molecular Biology, Vol 578 (6), pp 255-276
Abstract: In the last decade, molecular beacons have emerged to become a widely used tool in the multiplex typing of single nucleotide polymorphisms (SNPs). Improvements in detection technologies in instrumentation and chemistries to label these probes have made it possible to use up to six spectrally distinguishable probes per reaction well. With the remarkable advances made in the characterization of human genome diversity, it has been possible to describe empirical patterns of SNPs and haplotype variation in the genome of diverse human populations. These patterns have revealed that the human genome is structured in blocks of strong linkage disequilibrium (LD). Because SNPs tend to be in LD with each other, common haplotypes share common SNPs and thus the majority of the diversity in a region can be characterized by typing a very small number of SNPs; so-called tag SNPs. Herein lies the advantage of the multiplexing ability of molecular beacons, since it becomes possible to use as few as 30 probes to interrogate several haplotypes in a high throughput approach. Thus, through the combined use of tag SNPs and molecular beacons it becomes possible to type individuals for clinically relevant haplotypes in a high-throughput manner at a cost that is orders of magnitude less than that for high throughput sequencing methods.
Description: A.A. Komar (ed.), Single Nucleotide Polymorphisms, Methods in Molecular Biology 578, DOI 10.1007/978-1-60327-411-1_17, Humana Press, a part of Springer Science+Business Media, LLC 2009
URI: http://www.springerlink.com/content/tp2485635r657j15/#section=607222&page=1
Appears in Collections:Nanotechnology
Systems biology
General science, engineering & technology

Files in This Item:

File Description SizeFormat
Barreiro_2009.pdf591.17 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback