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Abstract. This study proposes a computationally efficient solution to
stream flow forecasting for river basins where historical time series data
are available. Two data-driven modeling techniques are investigated,
namely support vector regression and artificial neural network. Each
model is trained on historical stream flow and precipitation data to
forecast stream flow with a lead time of up to seven days. The Shoal-
haven, Herbert and Adelaide rivers in Australia are considered for exper-
imentation. The predictive performance of each model is determined by
the Pearson correlation coefficient, the root mean squared error and the
Nash-Sutcliffe efficiency. The performance of our data-driven models are
compared to that of a physical stream flow forecasting model currently
supplied by Australia’s Bureau of Meteorology. It is concluded that the
data-driven models have the potential to be useful stream flow forecast-
ing tools in river basin modeling.
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1 Introduction

Stream flow is an important component in the hydrological cycle and plays a
vital role in many hydraulic and hydrological applications. Research on model-
generated stream flow is used by river engineers and scientists for the study of
various hydro-environmental aspects, such as the increasing international con-
cern of riverine pollution and the growing flood stages of rivers [5]. The devas-
tating consequences of natural disasters, such as floods, can be lessened or even
prevented through accurate stream flow forecasts [15].

Two main types of stream flow forecasting models can be distinguished, based
on available information: physical and empirical. A physical model consists of
governing partial differential equations that describe the physical laws of a spe-
cific system. Empirical or data-driven models are based on observed data that
characterize the system [16].



2 Data-driven Stream Flow Forecasting

A physical rainfall-runoff model can be used to transform rainfall estimations
to runoff by modeling the hydrologic processes within a catchment, such as
interception, evaporation, overland and subsurface flow [8]. According to Perrin
et al. [14], it can be challenging to choose an appropriate model structure and
complexity for accurate simulation of hydrological behavior at catchment scale.

During the past few decades, considerable progress has been made in the
study of data-driven models to simulate the rainfall-runoff relationship [16].
Various processes within a river basin are characterized by measurable state
variables, such as stream flow, precipitation, temperature and humidity. A river
basin for which historical time series data are available is therefore a good can-
didate for the implementation of data-driven models.

In this paper the practicality of data-driven models for stream flow forecast-
ing with a lead time of up to seven days are investigated. In particular, two
supervised machine learning models are constructed, namely support vector re-
gression (SVR) and artificial neural network (ANN). Australian river sites are
considered, mainly because of a sufficient amount of available historical stream
flow and precipitation data.

The Bureau of Meteorology (BOM), Australia’s national weather and climate
agency, provides a forecasting service that supplies stream flow predictions at
more than 100 locations across Australia. These forecasts are determined by a
computer based system which uses a rainfall-runoff model known as GR4H as
its main component.3 It determines the total amount of rainfall in a specific
catchment, the fraction of rainfall that ends up as runoff, and the accumulation
of that runoff in downstream rivers [14]. Forecasts are given for a lead time of
up to seven days, and are used for several water management purposes. The
predictive capabilities of our data-driven models will be compared to the BOM
rainfall-runoff model.

2 Overview of SVR and ANN

We proceed with a cursory theoretical overview of the two data-driven prediction
methods considered in this paper.

2.1 Support Vector Regression

Support vector machines were originally developed to solve classification prob-
lems, but have been extended to the task of regression and time series prediction
in the form of support vector regression (SVR). Many hydrological prediction
problems have been addressed using SVR [15].

Consider a training set of n real-valued data pairs {(x1, y1), (x2, y2), . . . ,
(xn, yn)}, where xi is an input vector in some space X, with corresponding
output value yi. A generalized continuous-valued target function f(x) is fit to
the training set, such that a deviation of at most ε is obtained between each true

3 http://www.bom.gov.au/water/7daystreamflow/about.shtml
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ouput and its corresponding predicted value, and that f(x) is as flat as possible
[6]. Assuming f to be linear, we may write

f(x) = 〈w,x〉+ b, (1)

where w ∈ X, b ∈ R, and 〈·, ·〉 denotes a dot product inX. In order to get f as flat
as possible, the orientation parameter (or weight) w should be minimized. Some
of the data pairs might exceed the ε margin of error and cause the optimization
problem to be infeasible. We introduce slack variables, denoted as ξ and ξ∗, to
indicate the vertical distance from each data pair above and below the ε margins.
The convex optimization problem is solved by minimizing

1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ). (2)

The positive penalty parameter C determines the tolerated deviations larger
than ε. The minimization of (2) is a standard constrained optimization problem
and can be solved by applying Lagrangian theory [4]. The weight vector is derived
as

w =

n∑
i=1

(αi − α∗
i )xi, (3)

where αi and α∗
i represent Lagrangian multipliers associated with the training

points above and below the regression line, respectively. The value of b in equa-
tion (1) is computed by exploiting the Karush-Kuhn-Tucker conditions [7, 10],
as explained by Granata et al. [6].

In many applications the relationship between inputs and outputs in the
training data might show complex nonlinear behavior. A kernel function can be
introduced to implicitly map the training points from the original input space
X to a higher dimensional feature space Φ(X), such that a linear relationship
between the variables exist in Φ(X). The support vector expansion of the target
function for linear regression is then applicable in the feature space. Equation
(1) changes to

f(x) =

n∑
i=1

(αi − α∗
i )k(xi,x) + b, (4)

where

k(x,y) = 〈Φ(x), Φ(y)〉. (5)

The radial basis function (RBF) is a widely used kernel in hydrological pre-
diction applications [6], and is defined as

k(x,y) = exp(−γ‖x− y‖2), (6)

where γ > 0 is a kernel-specific hyperparameter. Choosing an optimal value for
λ, as well as for ε and C, is important when training an SVR model to fit a given
dataset [6].
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2.2 Artificial Neural Network

Artificial neural networks (ANNs) are especially suitable when the underlying
functions that describe complex phenomena are unknown [20], and have been
used extensively for hydrological modeling purposes [11].

An ANN contains a set of interconnected nodes that receive, process and
send information to one another over weighted connections. These nodes are
grouped in different layers. Input values enter the model through the first layer
(the input layer). The data is then fed forward through successive hidden layers
until it reaches the final layer (the output layer). The hidden layers enable the
ANN to learn complex relationships between input and output data [16]. An
ANN can be single layered, bilayered or multilayered, depending on the number
of hidden layers.

ANNs are further classified as feed-forward or recurrent, based on the di-
rection of information flow and processing between nodes. Feed-forward ANNs
allow information to travel only from the input layer to the output layer, while
recurrent ANNs allow information to travel in both directions. For each node, an
output is determined by calculating the sum of its weighted input nodes and ap-
plying a nonlinear activation function. According to Maier and Dandy [11], the
sigmoidal-type and logistic sigmoidal-type (such as tanh) activation functions
are frequently used in hydrological applications:

sigmoidal-type: g(z) =
2

1 + exp (−2z)
− 1, (7)

tanh: g(z) =
1

1 + exp (−z)
, (8)

where z represents the weighted sum of a particular node’s inputs. This result
is then used as input for the nodes in a succeeding layer. A linear activation
function is considered for the final hidden layer of regression models [11].

Training is achieved by finding an optimal set of connection weights that
minimize the estimated error between the true output values and the output
values that are determined by the network.

3 Methodology

A description of the procedures to construct SVR and ANN models for stream
flow forecasting at specific river sites follows.

3.1 Study Area and Data

High quality time series of daily stream flow and precipitation data for the
Australian river sites under study were obtained from the Australian Bureau of
Meteorology’s Hydrologic Reference Stations (HRS) and Climate Data Online
(CDO) services, respectively. The HRS network consists of over 200 river sites
that are mostly unaffected by water-related systems, such as dam construction
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and irrigation services, and located in different hydro-climatic regions across
Australia. CDO provides access to precipitation records from the Australian
Data Archive for Meteorology.

Three Australian river sites are considered for this study: the Shoalhaven
River at Fossikers Flat in New South Wales, the Herbert River at Abergowrie
in Queensland, and the Adelaide River at Railway Bridge in Northern Territory.
The Shoalhaven River is located in a temperate climate region and has a catch-
ment size of 4660 km2. The stream flow data for this site were obtained from
gauging station 215207 (150.18◦ E, 34.82◦ S) and the corresponding precipita-
tion from station 068085, 5.3 km away from station 215207. The Herbert River is
in a subtropical climate region and has a catchment size of 7488 km2. Its stream
flow data were obtained from gauging station 116006B (145.92◦ E, 18.49◦ S) and
the precipitation data from station 032091, 8.7 km away from station 116006B.
The Adelaide River is in a tropical climate region and has a catchment size of
638 km2. Its stream flow data were obtained from gauging station G8170002
(131.11◦ E, 13.24◦ S) and the precipitation data from station 014237, 3.3 km
away from station G8170002.

Only uninterrupted time series data were used for training: data from 1
January 2000 to 31 December 2014 for training the data-driven models at the
Shoalhaven and Herbert rivers, and data from 1 January 2008 to 31 December
2012 for the Adelaide river. For all three river sites, data from 5 February 2017
to 5 May 2017 were used as test data.

3.2 Input Selection, Data Preprocessing and Cross Validation

A moving time window is considered for the generation of input and output
data pairs. For each measured stream flow value (which is considered as an out-
put value), a corresponding input vector contains the precipitation and stream
flow values of the preceding p-day and q-day time windows, respectively. For
this study, p ranges from 0 to 2 and q from 2 to 5. P represents precipi-
tation, Q represents stream flow, t refers to the current day and d refers to
the forecasting lead time. An output value Qt+d then has an input vector
{Pt, Pt−1, · · · , Pt−p, Qt, Qt−1, · · · , Qt−q}. For each model that forecasts with a
lead time of d days, an exhaustive search is followed during training to find
optimal values for p and q.

Data preprocessing is implemented by normalizing the values in the dataset
to a range of [0, 1]. This ensures that the influence of large feature values (like
stream flow) does not dominate that of smaller feature values (like precipitation)
during the training process.

As discussed in Section 3.1, the available datasets are split into a training
set and a test set. In order to obtain a model that generalizes well to unseen
data, 10-fold cross validation is introduced, i.e. the full training dataset is split
into 10 folds of equal size. Each fold is considered as a validation set once, while
the remaining 9 folds are combined to form a training set. Ultimately, the model
with the lowest average validation error on all 10 trials is used for forecasting
purposes, and tested on the test set [16].
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3.3 Model Performance Evaluation

Three quantitative indices are considered to evaluate the performance of the SVR
and ANN models, and to compare them to the physically based BOM model.
These are the Pearson’s correlation coefficient (r), the root mean squared error
(RMSE) and the Nash-Sutcliffe efficiency (NSE):

r =

∑m
i=1(yi − y)(fi − f)√∑m

i=1(yi − y)2
√∑m

i=1(fi − f)2
, (9)

RMSE =

√√√√ 1

m

m∑
i=1

(yi − fi)2, (10)

NSE = 1−
∑m

i=1(yi − fi)2∑m
i=1(yi − y)2

, (11)

where yi and fi represent each of the m true and forecasted outputs in the test
set, respectively. The average of all true outputs is represented by y and the
average of all forecasted outputs by f .

Pearson’s correlation coefficient gives the extent to which the input and out-
put values are linearly correlated, and ranges between −1 and 1. A value close
to −1 or 1 shows a strong linear relationship between the two variables, whereas
values close to zero show little to no linear relationship. If the predicted values
of the model increase as the input values increase, a positive r-value is obtained.
If the predicted values decrease as the input values increase, a negative r-value
is obtained.

The RMSE measures the difference between a model’s predicted outcomes
and the true outcomes from the system that is being modeled. The smaller the
RMSE value, the better the performance of the model.

The NSE is used to assess the predictive power of a model and is always less
than or equal to 1. A model with an NSE of 1 corresponds to a perfect match of
predicted outcomes to true outcomes. An NSE of 0 indicates that the model’s
predictive capability is the same as considering the mean true outcome value as
a predictor. An NSE less than 0 occurs when the mean true outcome value would
have been a more reliable predictor than the model [9]. According to Noori and
Kalin [13], a model can be considered “good” if the NSE is above 0.5, and “very
good” if it is above 0.7.

3.4 SVR Hyperparameters

The SVR model with an RBF kernel is considered for this study. Three param-
eters have to be selected, namely C, ε and γ. We pick possible C values ranging
from 1 to 104, ε values from 10−3 to 10−1, and γ values from 10−4 to 1. An
exhaustive grid search is performed to find the combination of parameters with
optimal performance during training and cross validation.
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3.5 ANN Architecture

According to Maier and Dandy [11], a one hidden layered feed-forward neural
network provides suitable complexity to reproduce the nonlinear behavior of
hydrological systems and has been suitable for forecasting hydrological variables
in various studies.

It can be challenging to choose an appropriate number of hidden nodes within
the hidden layer, as too few might result in a network that cannot capture
the complex relationship between input and output, while too many may cause
overfitting. This study uses two different methods as bounds for the number of
hidden nodes, as proposed by Belayneh and Adamowski [1]. Wanas et al. [18]
determined that the optimal performance of a neural network is obtained with
log(n) hidden nodes, where n is the number of training samples. Mishra and
Desai [12] showed that optimal results are obtained with 2N+1 hidden nodes,
where N is the number of input nodes. Following Belayneh and Adamowski [1], a
trial and error approach can be implemented during training to find the optimal
number of hidden nodes ranging from log(n) to 2N+1.

As discussed, the sigmoidal-type and logistic sigmoidal-type activation func-
tions, given in equations (7) and (8), have been used frequently in hydrological
applications. We implement both, and pick the one that achieves the lowest error
during training and cross validation.

4 Results and Discussion

Results for the optimal input features, hyperparameter combinations for SVR
and architecture for ANN are discussed in the following subsections. The pre-
dictive capabilities of our data-driven models are also evaluated, based on the
criteria listed in Section 3.3.

4.1 Parameter Selection

Different lead times are considered for stream flow forecasting, ranging from 1
day to 7 days in advance. As stated in Section 3.2, the preceding time windows for
stream flow and precipitation that provide an optimal model are found separately
during training for each of the different prediction lead times. For SVR, an
optimal combination of hyperparameters is also determined, whereas for ANN,
an optimal number of hidden nodes and the choice of activation function. Results
are listed in Tables 1 and 2.

It can be observed that, when considering different prediction lead times, the
preceding time windows for stream flow and precipitation and the combination of
model parameters vary. It is also noticeable that only the optimal ANN and SVR
models for 7 day lead time forecasting of the Shoalhaven river site do not consider
any rainfall values. Apart from this particular case, it appears that rainfall is an
important input to the data-driven models for the three considered river sites.
Furthermore, each ANN model achieved the lowest error during training and
cross validation when considering the tanh activation function.
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Table 1. Optimal input features and hyperparameters in the SVR models for the three
gauging stations (C, ε and γ are SVR parameters; the model uses precipitation data
from days t − p to t and stream flow data from days t − q to t to predict stream flow
on day t+ d, with d the lead time).

Lead Shoalhaven Herbert Adelaide
time (d) p q C ε γ p q C ε γ p q C ε γ

1 day 3 2 100 0.001 0.1 5 2 100 0.001 0.1 5 2 1 0.001 1
2 day 2 1 10 0.001 0.1 5 1 1000 0.001 0.1 4 2 1000 0.001 0.01
3 day 2 2 1 0.001 0.1 4 1 10000 0.01 0.1 5 1 10000 0.01 0.01
4 day 3 2 100 0.001 0.001 4 1 10000 0.01 0.1 5 2 10000 0.01 0.01
5 day 3 2 100 0.001 0.001 2 2 1000 0.001 0.001 5 2 10000 0.01 0.01
6 day 2 2 100 0.001 0.01 2 1 10000 0.01 0.1 5 2 10000 0.01 0.01
7 day 2 0 10 0.001 0.1 2 1 10000 0.01 0.1 2 1 10000 0.01 0.1

Table 2. Optimal input features and architecture (number of nodes in the hidden
layer, h) in the ANN models for the three gauging stations.

Lead Shoalhaven Herbert Adelaide
time (d) p q h p q h p q h

1 day 3 2 9 5 2 12 3 2 4
2 day 3 1 5 3 1 8 4 2 6
3 day 5 1 11 5 2 5 5 2 3
4 day 5 2 10 4 1 4 5 2 3
5 day 5 2 10 4 1 4 3 2 8
6 day 2 2 4 4 1 4 5 1 4
7 day 4 0 3 3 1 3 5 2 3

4.2 Performance Evaluation

The efficiency criteria used in this study are the Pearson correlation coefficient,
the root mean squared error and the Nash-Sufcliffe efficiency. Based on these
performance indices, the SVR and ANN models that performed optimally on
the training and validation sets were applied to the (as yet unused) test sets
of the three river sites under study. Results are shown in Tables 3 to 5. For
comparison, prediction accuracies made by the Bureau of Meteorology’s stream
flow forecasting model are also given.

ANN outperforms the SVR and BOM models for stream flow predictions
with a lead time of 1 to 2 days at the Shoalhaven river site. The base flow
as well as the rising and falling limbs of the hydrographs are well represented
by the ANN model. However, the peaks are under- and over-predicted. As the
prediction lead time increases, the accuracy of each model decreases. Figures 1a
and 1b show how the time lag between observed and forecasted peaks increase.
Furthermore, Figure 1c shows that the SVR and ANN models fail to forecast
the rising limbs of the hydrograph for predictions with a lead time longer than
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Table 3. Performance evaluation for stream flow forecasting at the Shoalhaven river
station of our trained SVR and ANN models as well as the physically based model
used by the Australian Bureau of Meteorology (BOM).

Lead r RMSE NSE
time SVR ANN BOM SVR ANN BOM SVR ANN BOM

1 day 0.87 0.90 0.85 541 458 866 0.74 0.81 0.34
2 day 0.74 0.81 0.71 807 629 1357 0.43 0.65 −0.61
3 day 0.71 0.65 0.59 948 826 1601 0.22 0.41 −1.22
4 day 0.66 0.46 0.52 1040 969 1446 0.07 0.19 −0.79
5 day 0.54 0.52 0.28 1118 933 3272 −0.07 0.26 −8.13
6 day 0.39 0.33 0.18 1150 1263 5760 −0.11 −0.35 −27.11
7 day 0.32 0.26 0.18 1195 1094 3957 −0.20 −0.01 −12.17

Table 4. Performance evaluation for stream flow forecasting at the Herbert river sta-
tion of our trained SVR and ANN models as well as the physically based model used
by the Australian Bureau of Meteorology (BOM).

Lead r RMSE NSE
time SVR ANN BOM SVR ANN BOM SVR ANN BOM

1 day 0.93 0.92 0.95 1627 1728 1748 0.85 0.83 0.83
2 day 0.79 0.82 0.90 2721 2525 2152 0.59 0.64 0.74
3 day 0.70 0.73 0.82 3067 2952 3138 0.48 0.52 0.45
4 day 0.59 0.60 0.74 3514 3691 3707 0.32 0.25 0.25
5 day 0.52 0.53 0.28 5996 3936 12911 −0.95 0.16 −8.04
6 day 0.42 0.48 0.12 4154 3982 23648 0.08 0.15 −28.97
7 day 0.38 0.40 0.09 4116 4391 21508 0.10 −0.02 −23.49

Table 5. Performance evaluation for stream flow forecasting at the Adelaide river
station of our trained SVR and ANN models as well as the physically based model
used by the Australian Bureau of Meteorology (BOM).

Lead r RMSE NSE
time SVR ANN BOM SVR ANN BOM SVR ANN BOM

1 day 0.79 0.85 0.84 975 944 925 0.61 0.63 0.65
2 day 0.63 0.67 0.54 1287 1277 1466 0.33 0.34 0.12
3 day 0.53 0.51 0.40 1376 1965 1671 0.21 −0.62 −0.17
4 day 0.41 0.43 0.25 1533 1983 1870 0.00 −0.67 −0.49
5 day 0.38 0.47 0.13 1561 1980 2036 −0.03 −0.66 −0.75
6 day 0.33 0.35 0.16 1567 2188 1856 −0.03 −1.00 −0.44
7 day 0.27 0.26 0.19 1602 2158 1835 −0.06 −0.92 −0.39
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(a)

(b)

(c)

Fig. 1. Daily stream flow predictions for (a) 1 day, (b) 2 day and (c) 5 day lead time
forecasts, for the Shoalhaven station.

4 days. This can be attributed to the absence of information (such as rainfall
events) when increasing the prediction lead time. For lead times greater than 3
days, the SVR forecasts show the strongest correlation to the observed stream
flow, whereas the ANN generally performs better in terms of RMSE and NSE.
For 6 and 7 day lead time predictions, the NSE of all three models are negative,
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indicating that the mean value of the observed outcomes would have been a more
reliable predictor than the forecasting models.

No single model outperforms the rest on the test set of the Herbert river
station. For instance, the BOM model obtains the strongest Pearson correlation
(0.95) to the observed stream flow when forecasting 1 day in advance, but fails
to determine the peaks as accurately as the SVR model. The BOM model does,
however, show the better performance in forecasting stream flow with a lead
time of 2 days. Similar to the Shoalhaven river models, an increase in prediction
lead time causes a decrease in model performance and an increase in lag times
between observed peaks and forecasted peaks.

The BOM and ANN models show the better performance on the test set of the
Adelaide river station for 1 and 2 day lead time predictions. For instance, as seen
in Table 5, comparable r, RMSE and NSE results are obtained for both models.
The SVR model shows the better forecasting performance for predictions with
a lead time greater than 2 days. Similar to both Herbert and Shoalhaven, the
prediction capabilities of all three models worsen with an increase in prediction
lead time.

5 Conclusion

This study investigated the ability of data-driven modeling for stream flow fore-
casting with a lead time of up to 7 days. SVR and ANN models were employed to
forecast stream flow at the Shoalhaven, Herbert and Adelaide gauging stations.
The predictive capabilities of these data-driven models were compared to that
of a physically based rainfall-runoff model. For 1 day lead time forecasts, each
data-driven model properly modeled the stream hydrograph shape and the time
to peak. However, a noticeable decrease in predictive capabilities with an in-
crease in lead time occurred. The SVR method performed better than the BOM
model for the Shoalhaven station, based on the evaluation criteria. For the other
stations, no single model outperformed the others.

Based on the results obtained for this study, SVR and ANN models have
the potential to be useful tools for short-term stream flow forecasting. They
do not require specialized knowledge of physical phenomena, and are therefore
especially useful when it is difficult to build a physically based model due to a lack
of understanding of the underlying processes. It is also helpful to have modeling
alternatives and to validate results obtained from physically based models to that
of data-driven models. Furthermore, data-driven models are computationally
efficient in the sense that once they are trained, predictions can be made very
quickly. Data-driven models could also be combined with physically based models
to form even more powerful and accurate hybrid forecasting models.

A limitation of data-driven models are, however, that substantial historical
stream flow and precipitation data records should be available. Many of the exist-
ing gauging stations have limited available datasets, or a considerable amount of
missing data. Developing machine learning techniques to address these problems
may be considered in further studies.
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