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ABSTRACT

A constitutive model that captures the dominant strengthening and softening physics or microstructural changes of
metallic materials is needed within a numerical environment for the effective prediction and simulation of plasticity
during hot working processes. Dislocation density or related stress values play the primary role of internal state
dependent variables in the development of many unified constitutive material models using the Kocks-Mecking
work hardening theory as foundation. This theory is based on an approach to model the viscoplastic behaviour of
crystalline materials as a result of interaction between mobile and forest dislocations in the material microstructure.
Dislocation density based state dependent models have the ability to not only provide a good description of the
mechanical response of metallic materials in uniform loading, but also have good predictive capability. One popular
model is the Mechanical Threshold Stress model while other dislocation kinetics based models have also been
proposed in literature to include various physical phenomena. In this conference contribution, the development and
implementation of temperature and rate dependent state variable based plasticity is presented. The model foundation
as well as extensions to include cyclic effects and recrystallisation are coded into a user material subroutine for use
in finite element packages.
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INTRODUCTION

Most Finite Element Analysis (FEA) software packages have a comprehensive list of material models already im-
plemented to choose from. If a different material model is required, a user implemented material subroutine can be
linked to Abaqus, CalculiX and Code_Aster for example. All three of these packages can make use of the Abaqus
user material format coded in Fortran. Sophisticated state variable based models such as the Mechanical Threshold
Stress (MTS) model [1] as well as dislocation density based combined isotropic and kinematic hardening [2] or
models for static and dynamic recrystallisation [3] are available in the research space. Many of these models can be
seen as implementations and extensions using the Kocks-Mecking hardening theory [4, 5, 6, 7] as foundation.

The development and implementation of state dependent user materials in computational plasticity is discussed in
the Ph.D. thesis by Jansen van Rensburg [8]. In the thesis, an incrementally objective user material framework for
purely isotropic and kinematic hardening J2 plasticity is developed, implemented and verified against the native
implementation of Abaqus. These user material frameworks can be extended by altering either the purely isotropic
or combined hardening subroutines as well as the support functions called by the framework, resulting in an array
of more sophisticated models.



Within the implemented framework for user material subroutines, the MTS model as well as dislocation density
based extensions are presented in this paper. Coding of these scalar equations into purely isotropic or combined
hardening subroutines result in incrementally objective implementations of the models for use in FEA [8].

THE MECHANICAL THRESHOLD STRESS MODEL

The MTS model was developed by Follansbee and Kocks [1] to describe the post yielding behaviour of metals. In the
MTS model, the mechanical threshold (σ̂) is the internal state variable. This threshold value represents a theoretical
maximum flow stress at 0K. From there the material flow stress, σY, is obtained by scaling the mechanical threshold
to accommodate rate and temperature dependence. Following Nabarro et al. [9], the threshold flow stress is separated
into an athermal σ̂a and k different thermal components σ̂kT . At different absolute temperature values T and plastic
strain rates ε̇p, the contribution to the flow stress σkT is related to the threshold counterpart σ̂kT through the scaling
function Sk(ε̇p, T ), so that

σkT = σ̂kT
µ (T )

µr
Sk(ε̇p, T ). (1)

Here, µ (T ) and µr indicate the current and reference shear modulus values. The temperature dependent shear
modulus is expressed by Varshni [10] as

µ(T ) = µr −
Dr

exp (Tr/T)− 1
, (2)

where µr, Dr and Tr are constants. The reference temperature Tr has to be well below the temperatures of interest.
The scaling functions take the form [1]

Sk(ε̇p, T ) =

[
1−

(
kBT

g0kµb3
ln
ε̇0k
ε̇p

)1/qk
]1/pK

, (3)

where g0k is the normalised activation energy for dislocations to overcome the obstacles, b is the magnitude of the
Burgers’ vector length and kB = 1.38064852×10−23m2kgs−2K−1 is the Boltzmann constant. ε̇0k is a constant
proportional to the density of mobile dislocations while pk and qk are statistical constants that characterise the shape
of the obstacle profile. In the original MTS model, two thermal stresses are used, i.e. σ̂1

T and σ̂2
T . The first is

a constant thermal stress σ̂i = σ̂1
T . The second is an evolving threshold stress internal state variable σ̂ε = σ̂2

T =
1
2Mµb

√
ρwithM the average Taylor factor that accounts for the polycrystallinity of the material [5]. The equivalent

flow stress σY is finally expressed as

σY = σ̂a + σ̂i
µ (T )

µr
Si(ε̇p, T ) + σ̂ε

µ (T )

µr
Sε(ε̇p, T ). (4)

The temperature and rate dependent evolution of the internal stress value in the presence of additional equivalent
plastic strain according to the Kocks-Mecking work hardening theory can take the form [5]

dσ̂ε
dεp

=
Mµb

4
√
ρ

dρ

dεp
where

dρ

dεp
= Mk1

√
ρ−Mk2(ε̇p, T ) ρ. (5)

The initial work hardening θ0 as well as the temperature and rate dependent saturation stress σ̂s (ε̇p, T ) can be
introduced with

θ0 =
M2µbk1

4
and σ̂s (ε̇p, T ) =

2θ0
Mk2(ε̇p, T )

. (6)



This means that the evolution of the threshold stress value σ̂T could be expressed as a function of itself. This
substitution results in the Voce-law [11]. Adding an exponent α results in the modified form of the Voce-law [11].

dσ̂ε
dεp

= θ0

(
1− σ̂ε

σ̂s

)α
. (7)

Following the work of Chen and Gray [12], the threshold saturation stress σ̂s (ε̇p, T ) is a function of both strain rate
and temperature, through

ln
ε̇p
ε̇0s

=
g0sµb

3

kBT
ln

σ̂s
σ̂0s

, (8)

where ε̇0s, g0s and σ̂0s are constants. The version of the MTS model contained in this section is implemented
to work within the purely isotropic user material subroutine in [8]. The model is calibrated to hardening data at
different strain rates and temperatures digitised from the work done by Tanner and McDowell [13] using a material
point simulation. To compare the model response using a detailed Abaqus simulation to the data, compression of
an axi-symmetric billet is modelled with material response provided by the user material. An axi-symmetric quarter
of a billet is modelled using a 20×20 grid of quadratic axi-symmetric elements. The billet is compressed using a
rigid analytical plane for the die contact surface. Hard normal contact between the billet and die is modelled with a
Coulomb friction coefficient µfrict = 0.2.

Four different problems are simulated that correspond to the experimental test data for 1s−1 and 0.0004s−1 at 298K,
0.0004s−1 at 407K and 0.01s−1 at 542K. The billet section modelled has a radius of 2.5mm and a half length
of 5mm, meaning a 100% reduction in length corresponds to a die displacement of 5mm × (exp(−1) − 1) =

−3.1606mm. This displacement is applied over 1s in the 1s−1 case, 100s in the 0.01s−1 case and 2500s in the
0.0004s−1. The simulations are solved over 100 time increments.

The material property values used in the simulation are itemised below.

• The elastic property values of µr = 49.91GPa, Dr = 3.29GPa and Tr = 200K in Equation (2) are used with
a Poisson’s ratio of ν = 1/3.

• The stress values in Equation (4) are σ̂a = 0MPa, σ̂i = 20.67MPa and σ̂ε|εp=0 = 0MPa.

• The scaling function values in Equation (3) are kB/g0ib3 = 1.402MPa/K, kB/g0εb3 = 1.632MPa/K, pε =

pi = qε = qi = 1 and ε̇0ε = ε̇0i = 107s−1.

• The power law hardening according to Equation (7) is used with θ0 = 2611.94MPa and α = 2.

• The saturation stress in Equation (8) have property values σ̂0s = 689.12MPa, kB/g0sb3 = 0.5011MPa/K and
ε̇0s = 1010.

In Figure 1, the von Mises stress distributions after 100% reduction in length is displayed for the hardest and
softest of the material responses modelled. In Figure 1(a) the 1s−1 at 298K results are given while (b) is the
stress distribution in the 0.01s−1 at 542K case. From the Abaqus results, the true strain values at each increment
is determined from the prescribed die displacement. The volume preserving area assumption is further used to
calculate the true stress using the reaction force extracted at the mid plane nodes. In Figure 1(c) the effective stress
versus strain curves for the four cases simulated are presented compared to the experimental data of Tanner and
McDowell [13].

The Abaqus simulation data with simple post processing to estimate the true stress - true strain data compares well to
the experimental test data. The non-smooth response starting at about ε ≈ 0.5 is due to the contact between the die
surface and rollover of elements at the corner. If greater accuracy between the finite element result and experimental
test data is required however, further characterisation using numerical optimisation can be performed using finite
element evaluations within the objective function evaluation.



(a)

(b) (c)

Figure 1: Von Mises stress distributions after 100% reduction in length for (a) 1s−1 at 298K and (b) 0.01s−1

at 542K. (c) Abaqus axi-symmetric simulation response using the material parameters estimated for OFHC Cu
compared to the experimental test data in descending order for 1s−1 and 0.0004s−1 at 298K, 0.0004s−1 at 407K
and 0.01s−1 at 542K.

DISLOCATION DENSITY BASED

An alternative choice on internal state variable could also be considered following the dislocation density based
modelling approach of Estrin [2]. While the initial value of the true dislocation density values (ρ0 = ρ|εp=0)
make the choice of dislocation density itself a difficult choice for an internal state variable, a stress like constant
σ0 = 1

2Mµb
√
ρ0 is be introduced so that the threshold stress value is now determined from

σ̂ε = σ0
√
Y . (9)

This modification introduces the dislocation density ratio variable Y = ρ
ρ0

, a new internal state variable with typical
initial value Y |εp=0 = 1. Equation (9) can be substituted into Equation (4) to formulate the MTS model in terms
of the new internal state variable Y instead of the threshold stress value σ̂ε. Assuming no constant thermal stress
component (σ̂i = 0MPa), the temperature and rate dependent flow stress in Equation (4) has the form

σY = σ̂a + σ0
√
Y
µ (T )

µr
Sε(ε̇p, T ). (10)

The constitutive formulation may now be completed by using the theory on dislocation density based modelling to
evolve the dislocation density ratio in the process of plastic deformation instead of the threshold stress directly. By
introducing C1 = Mk1/

√
ρ0 and C2 (ε̇p, T ) = Mk2 (ε̇p, T ), evolution of the dislocation density ratio internal state

variable following Equation (5b) is now determined from [2]

dY

dεp
= C1

√
Y − C2(ε̇p, T ) Y. (11)

The evolution of the dislocation density ratio in Equation (11) is determined by different values of the constant C1

and form of the the dynamic recovery annihilation function C2 (ε̇p, T ). We use a function

C2(ε̇p, T ) = C20 exp

[
− T

a02µ
ln

(
ε̇p
ε̇02

)]
, (12)



that is equivalent to the saturation stress based formulation in Equation (8) used by Chen and Gray [12]. In this
function C20, ε̇02 and a02 are constants. a02 is a constant to represent the convenient grouping of parameters
a02 = g0sb

3/kB. Further inclusion of physical phenomena is possible by reformulating Equation (11).

Following the work done by Kok et al. [14] an evolving geometric substructure is included in the model by introduc-
ing the average slip plane lattice incompatibility λ̄ as another internal state variable. Kok et al. [14] observed that
the evolution of the average slip plane lattice incompatibility is inversely proportional to the grain size dx. Using
the proportionality constant Cλ, an evolution equation for this internal state variable is [14]

dλ̄

dεp
=
Cλ
dx
. (13)

Also using the formulation by Song and McDowell [15] as a further extension to the dislocation density ratio
evolution equation, thermal recovery is added. The rate form of Equation (11) with large strain and thermal recovery
effects is

Ẏ = ε̇p

(
Cgλ̄

rg + C1

√
Y − C2(ε̇p, T ) Y

)
− C3(T )Y r3 . (14)

where Cg , rg and r3 are constants while C3 is a temperature dependent function. If the constant C30 is introduced
while a03 = Qself/R is associated with the scaled activation energy for self diffusion. The static or thermal recovery
term is modelled using [15]

C3(T ) = C30 exp

(
−a03
T

)
. (15)

The dislocation density based model up to here is a physically extended form of the reformulated isotropic MTS
model with large strain effects and static recovery using two evolving internal state variables (Y and λ̄). Cyclic
effects are now added to the model formulation. Some of the dislocations are recoverable in the event of load
reversal, making it necessary to distinguish between truly immobilised and recoverable stored dislocation density.
A non-dimensional form of the partially recoverable part of the dislocation density ratio is given by the internal state
variable Z following the work done by Estrin [2]. This internal state variable evolves following

Ż = ε̇p

(
C4

√
Y − C2(ε̇p, T )Z

)
− C5(T )Z. (16)

Equation (16) contains a storage rate constant C4 and dynamic recovery term C2(ε̇p, T )Z. C5(T )Z further rep-
resents the recoverable edge density loss rate due to thermally activated jog formation [2]. The last term is time
rather than strain dependent and can take the form of the Arrhenius expression involving the activation energy for
jog formation. Much like Equation (15), if a05 = Qjog/R is used as a parameter representing the scaled activation
energy associated with jog formation

C5(T ) = C50 exp

(
−a05
T

)
. (17)

The dislocation density variable Z is recovered upon each stress reversal. This corresponds to an internal state
variable update

Y := Y − Z and Z := 0 (18)

Estrin [2] further introduces a back stress σB into his chosen one dimensional kinetic equation. The evolution of the
one dimensional back stress is considered to obey the equation

dσB
dεp

= C6

√
Y − C7σB, (19)



(a) (b)

Figure 2: (a) Cyclic data for Alloy 800H [2] versus the implemented model prediction. (b) Variable strain rate data
for Inconel 738LC [2] versus model prediction.

where C6 and C7 are constants. The combined hardening model using Y , λ̄, Z and back stress evolution equations
is coded into a subroutine that works with the combined user material framework [8]. To illustrate the ability of the
model, it is characterised to the deformation data for Alloy 800H and Inconel 738LC digitised from the work by
Estrin [2].

Two cycles of the Alloy 800H material response is digitised and fit using the model. The deformation is modelled
at 1123K and a strain rate of 2×10−3s−1. The model response fit to the digitised data is presented in Figure 2(a).
The elastic parameter values of µr = 60GPa, ν = 0.3 and Dr = 0GPa so that µ = µr are used. The athermal stress
component is σ̂a = 0MPa while the reference stress parameter is σ0 = 734.41MPa. Scaling factor parameter values
are a0ε = g0εb

3/kB = 0.7424K/MPa, pε = 0.5, qε = 1.5 and ε̇0ε = 107s−1. The other material parameter values
are Cg = 0, C30 = 0s−1, C1 = 43.302, C20 = 32.469, a02 = 4.497K/MPa, ε̇02 = 107s−1, C4 = 10.589, C50 =

0.7253s−1 and a05 = 20000K with the parameters associated with the back stress evolution C6 = 64897.42MPa
and C7 = 628.34.

In Figure 2(b), the model prediction is presented along with the variable strain rate data for Inconel 738LC. In
this case, the elastic parameter values of µr = 50GPa, ν = 0.3 and Dr = 0GPa are used. The athermal stress
component is σ̂a = 277.184MPa with σ0 = 4410.47MPa. Scaling factor parameter values are a0ε = 0.9392K/MPa,
pε = 0.2551, qε = 0.755 and ε̇0ε = 107s−1. Furthermore Cg = 0, C30 = 0s−1, C1 = 22.23, C20 = 75.67,
a02 = 0.478K/MPa, ε̇02 = 107s−1, C4 = 0.0039, C50 = 11.924s−1 and a05 = 20000K. The back stress is evolved
using C6 = 30329.65MPa and C7 = 180.11.

There is a good fit despite setting Cg = 0 and therefore ignoring the effect of λ̄ on the dislocation density accu-
mulation. This indicates that the carbide particles present in the alloy does not affect the cyclic behaviour of the
material according to the data used. If more data is available at different rates and temperatures during the model
characterisation, the parameter values should have other values since the Alloy 800H cyclic data is at isothermal
conditions for a single rate for example.

RECRYSTALLISATION

A recrystallisation model similar to the one validated by Brown and Bammann [3] is implemented. Multiple waves
of recrystallisation can be simulated with various recrystallised and unrecrystallised volume fractions existing si-
multaneously. The recrystallisation is based on the mobility of grain and subgrain boundaries. From the work by
Cahn and Hagel [16], the recrystallised volume fraction growth rate is

ḟx = Axvx. (20)



Here, Ax is the interfacial area between recrystallised and unrecrystallised regions and vx is the average velocity of
the interface. Average grain boundary velocity is calculated using [17]

vx = MP, (21)

where M is the grain boundary mobility and P the driving pressure. As the material deforms, the average misorien-
tation across the geometrically necessary subgrain boundaries increase, which in turn increases the mobility of the
boundaries. In the dislocation density ratio based model implementation, the average slip plane lattice misorienta-
tion λ̄ internal state variable is assumed proportional to the average misorientation angle θ̄ [8]. The misorientation
angle ratio used by Chen et al. [18] is therefore replaced and a reformulated equation using the average lattice slip
plane incompatibility is introduced. The average subgrain boundary mobility is approximated as [8]

M̄ = M0 exp

(
−QM
RT

)[
1− exp

(
−CMθλ̄

rMθ
)]

(22)

whereQM is the activation energy for grain boundary mobility whileM0, CMθ and rMθ are constants. The pressure
driving the subgrain boundary growth can in it’s simplest form be expressed as P = 1

2µb
2ρ [19]. Considering the

dislocation density ratio used as evolving internal state variable, Y = ρ/ρ0, the driving pressure is calculated by

P =
1

2
µb2ρ0Y. (23)

Equations(22) and (23) means recrystallisation is modelled in terms of the internal state variables Y and λ̄. An
isotropic implementation using these two state variables is therefore considered.

The original unrecrystallised material has a volume fraction fx0
= 1. fx1

represents the material volume fraction
that has undergone one recrystallisation cycle while the remaining unrecrystallised volume fraction is 1 − fx1

.
Given multiple cycles of recrystallisation, fxi − fxi+1

represents the total volume fraction of material that has been
recrystallised i times as in the model by Brown and Bammann [3]. Each volume fraction has it’s own set of internal
state variables. The variables Yxi and λ̄xi represent the internal state variables associated with the material volume
fraction fxi − fxi+1

. The interfacial boundary area Ax in Equation (20) is approximated between the fxi and fxi+1

volume fractions using the equation formulated by Brown and Bammann [3]

A(fxi , fxi+1) = fxi

(
fxi+1

fxi

)rRxa
(

1−
fxi+1

fxi

)rRxb

(1 + CRxc (1− fxi)) , (24)

where rRxa, rRxb and CRxc are constants. Using Equations (22), (23) and (24) a generalised recrystallised volume
fraction growth rate for fxi+1

is formulated using the state variables for the volume fraction fxi − fxi+1
. Equa-

tion (20) is formulated for each fxi+1
as

ḟxi+1
= YxiCRx0CRxT (T )CRxλ

(
λ̄xi
)
A(fxi , fxi+1

). (25)

The function is written so that CRx0 effectively contains all the pre-exponential constants. Similarly, CRxT (T )

contains the temperature dependence in a single function

CRxT (T ) = µ (T ) exp
(
−a0Rx

T

)
. (26)

Here, a0Rx is again the convenient grouping of the activation energy and universal gas constant as done in Equa-
tion (15). The function CRxλ

(
λ̄
)

contains the geometric effects in the rewritten function

CRxλ

(
λ̄xi
)

= 1− exp
(
−CRxλ0λ̄

rRxλ
xi

)
, (27)

where CRxλ0 and rRxλ replaces the constant CMθ and exponent rMθ in Equation (22) for subscript consistency.



Given a time increment δt, the first (fx1
) and second (fx2

) volume fractions can both progress, meaning region
fx1 − fx2 will increase by δfx1 and decrease by δfx2 . Assuming recrystallisation removes the dislocation structure,
the dislocation density ratio within a newly recrystallised portion δfx1

should be reset. This is taken into account by
Brown and Bammann [3] using the rule of mixtures. Doing the same for the model in Jansen van Rensburg [8], the
dislocation density ratio evolution in Equation (14) is replaced by

Ẏxi = ε̇p

(
Cgλ̄

rg
xi + C1

√
Yxi − C2(ε̇p, T ) Yxi

)
− C3(T )Y r3xi −

ḟxi
fxi − fxi+1

Yxi (28)

for the dislocation density ratio associated with volume fraction fxi − fxi+1 . The average slip plane lattice incom-
patibility in Equation (13) is also replaced in the presence of recrystallisation by

˙̄λxi = ε̇pCλx −
ḟxi

fxi − fxi+1

λ̄xi (29)

for the fxi−fxi+1
material volume fraction. Cλx here is a constant related toCλ/dx in Equation (13) if the grain size

itself is not specifically known. In the presence of recrystallisation, the equivalent threshold stress of Equation (9)
is calculated using the average dislocation density ratio

Ȳ =

nx−1∑
i=0

Yxi
(
fxi − fxi+1

)
, (30)

where nx is the total number of recrystallisation cycles. The dislocation density based user material with recrystalli-
sation is implemented into a subroutine called by the isotropic user material framework [8]. The model is illustrated
here on a larger set of the Copper data digitised from the experimental work done by Tanner and McDowell [13].
The material parameters resulting in the fit to the Copper data in Figure 3 are:

• µr = 43.8GPa, Dr = 4.7GPa, Tr = 252K and ν = 1/3 for the elastic properties using the shear model
relationship in Equation (2).

• a0ε = g0εb
3/kB =2.1037K/MPa, pε = 1, qε = 2 , and ε̇0ε =106s−1 for the temperature and rate dependent

scaling function in (3).

• The athermal yield stress component is σ̂a =12.519MPa and reference stress is σ0 = 17.295MPa using
Equation (10).

• Cλx = 1 is used for the evolution of λ̄ according to Equation (29).

• Cg = 6378.74, rg = 0.769, C1 = 278.87, C20 = 11.773, a02 = 0.904K/MPa, ε̇02 = 4.0112×1012, C30 =

83.07s−1, a03 = 6370.675K and r3 =0.8079 for the dislocation density ratio evolution in Equation (28).

• CRx0 = 9346.62s−1 in Equation (25), a0Rx =17633.796K in Equation (26) while CRxλ0 = 47.247 and
rRxλ = 3.87 in Equation (27). rRxa = 0.1424, rRxb = 1.7677 and CRxc = 393.44 in Equation (24).

The model gives valid responses in a large range of rates and temperatures as visible in Figure 3 with temperatures
ranging from 25◦C to 541◦C and rates between 0.0004s−1 and 6000s−1. Thanks to the user material framework
[8] it is also possible to use the recrystallisation model in a finite element simulation. In Figure 4, different internal
state variables are displayed as a result of a simulation using the material parameters identified for Copper.

Compression of a Copper billet is modelled using an axi-symmetric simulation. A billet with diameter 5mm and
height 7.5mm is compressed to 50% its original height in 2000 seconds. The compression is modelled at a constant
temperature of 541◦C. In Figure 4(a) the equivalent dislocation density using Equation (30) is illustrated with the
volume fraction averaged slip plane lattice misorientation (b). Figure 4(c) shows the volume fraction recrystallised
at least once while Figure 4(d) shows the material volume fraction that has undergone at least two recrystallisation
cycles.



Figure 3: Numerical model (colored lines) calibrated to Tanner and McDowell’s OFHC copper data [13] for differ-
ent strain rates at 25◦C, 269◦C and 541◦C.

(a) (b)

(c) (d)

Figure 4: Internal state variables of a billet with recrystallisation compressed 50% in 2000 seconds at 541◦C. (a)
Equivalent dislocation density ratio and (b) Misorientation. Volume fractions associated with (c) the first and (d)
second wave of recrystallisation.



CONCLUSIONS

Thanks to the incrementally objective user material frameworks [8], sophisticated state dependent material models
can be implemented into a finite element environment. Different model formulations are possible by altering the
Fortran code called to represent the relevant one dimensional model formulation. This was illustrated using the
MTS model as well as models for dislocation density based combined hardening and isotropic hardening with
recrystallisation as an example [8].
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