Comparing the Performance of Object Databases and ORM Tools

PIETER VAN ZYL,

DERRICK G. KOURIE

AND

ANDREW BOAKE

ESPRESSO Research Group
Department of Computer Science
University of Pretoria

The currently popular distributed, n-tiered, objedented application architecture provokes mansigtedebates. Designs of such applications are
often divided into logical ‘tiers’ — usually usemtérface, business logic and domain object, or,da&es, each with their own design issues. In
particular, the latter contains data that needsetstored and retrieved from permanent storagesides need to be made as to the most appropriate
way of doing this — the choices are usually whetbanse an object database, to communicate diredty a relational database, or to use object-
relational mapping (ORM) tools to allow objects®translated to and from relational form.

Most often, depending on the perceived profile te# aipplication, architects make these decisionsgusiles of thumb derived from particular
experience or the design patterns literature. Exesnpnclude: object-oriented databases ease praogiragn relational databases ease report
generation and data mining; object-oriented datase good for navigation around an object modkltional databases are good for sequential
processing and complex queries; if you are wriangapplication from scratch, use an object databbgeu need to integrate to various sources of
legacy data, use an ORM tool. Although helpfulstheules are often highly context-dependent andféea misapplied.

Research into the nature and magnitude of ‘desigre$’ in this area has resulted in a series ottrmarks, intended to allow architects to more
clearly understand the implications of design denis concerning object persistence. In this patberperformance of selected open source object
persistence tools is investigated, to attempt #oifgl the myths surrounding the performance of diféerent options. In particular, we compare
Hibernate, representative of the ORM stable, artbdtepresentative of object-oriented databases OM7 benchmark is used to compare the speed
of execution of a suite of typical persistencetezlaoperations in both candidates. We then propose preliminary explanations of the sometimes
surprising results.

Categories and Subject Descriptors: D.S8ffware Engineerind: Metrics—performance measures; H.2Dafabase Management Systems—
Object-oriented databases ; K. 6\Majpagement of Computing and Information Systemp Installation Management— benchmarks, performance
and usage measurement; H. D&fabase Management]Languages (D.3.2)Database (persistent) programming languages ; Qaiegyiages

General Terms: Design, Experimentation, Performaln@meguages

Additional Key Words and Phrases: Persistence oRegnce, Benchmark, Object Oriented Database MamagfeSystems (ODBMS) , Object —
Relation mapping (O-R or ORM) , Hibernate, db4o.

1. INTRODUCTION

Many contemporary applications use data that néedse stored and retrieved. In the object oriergedironment,
objects are usually used to represent data, athdsitontext, it is thereforebjectsthat need to be persisted. Persistence
implies a processof how to store the objects' [Ambler 1998] as vealla persistence mechanism. There are three well-
known classes of object persistence mechanism: cOl§jgiented Database Management Systems (ODBMS's) ,
Relational Database Management Systems (RDBMS'ds) @hject-Relational Database Management Systems.
(Another of course, is the simpler mechanism otingiserialized object representations to a fi@ajtell et al [2000]
define an ODBMS to be a DBMS that integrates dat@bzapabilities with object-oriented programmingglaage
capabilities. In such an ODBMS, both object atti@suand object methods are stored in the database.

A well-known problem in persisting objects to aat&nal database is the so-callethedance mismatdhat arises
between both the object model and the relationatieh@nd between the object programming language thad
relational query language [Cattell 1991]. To resoflie impedance mismatch problem, various hybridtisos have
been proposed. Thus, object-relational databases theen developed, and traditional RDBMS vendoxe lhiacluded
object persistence capabilities into their produCisject Relational Mapping (ORM or also known afktools have
also been developed in an attempt to bridge thssmaich and to make persistence of objects easi¢hdadeveloper.

Author Addresses:

P. van Zyl, ESPRESSO Research Group (http://espesup.ac.za) , Department of Computer Scientiegetsity of Pretoria, Pretoria, 0002, South
Africa; pvzyl@csir.co.za.

A. Boake, Espresso Research Group (http://esprssgp.ac.za) , Systemic Logic; andrew@systemiclogim

D. Kourie, Espresso Research Group (http://espressip.ac.za) , Department of Computer Scienceyadsity of Pretoria, Pretoria, 0002, South
Africa; dkourie@cs.up.ac.za

Permission to make digital or hard copies of alpart of this work for personal or classroom usegrainted without fee provided that the copies are
not made or distributed for profit or commerciavadtage, that the copies bear this notice anduheifation on the first page. Copyrights for
components of this work owned by others than SATC&1the ACM must be honoured. Abstracting withditrés permitted. To copy otherwise, to
republish, to post on servers, or to redistribathsts, requires prior specific permission andidee.

© 2006 SAICSIT

Proceedings of SAICSIT 2006, Pages 1 -11

2 e Pietervan Zyl et al.

These tools provide a mapping between the objedeirand the relational model, acting as an intefargdetween an
object oriented code base, and a relational databas

In choosing between these options for a particapgalication, one needs to consider various ‘forc€ief among
these are ease of development, performance andsataalifferent sources of data, perhaps by maae thst the
application being developed. The different solwioasolve these forces differently. For instantgea databases ease
development considerably by automating virtuallyaalpects of persistence, thus freeing the develmpeoncentrate
on more pressing business modelling aspects. Hawetgect databases generally hide their conteatsnol object
oriented programming environments, which considgrabmplicates extraction of the data by populgrorting and
data mining tools.

Another example concerns performance. Popular miigeumb assert that an application that navigétesdata
(following links) will be more suited to object ddiiase use, while one that processes data itemsrdedly (for
example, adding interest to clients’ account batahcor one that performs complex queries (“Showthig client’s
total credit exposure”) are more suited to relatlaratabases. Popular belief also asserts thattetgiational tools add
translation overhead to all persistence operatiand,so are proportionally slower that either ef dther two solutions.
But, they do allow developers to use more poweshjéct oriented domain modelling techniques, whasgstructs are
then translated to relational equivalents by tho. But, specifying these translation rules agaidsatime and energy to
the development process.

We have seen that the correct decision for a peati@pplication is both context dependent andirequa good
understanding of the relative importance, and ef dglstual magnitude, of the forces in the chosentisal. In our
research, we are delving into more objective dtaifon of these forces. Essentially, we are askirrgsame questions
that have been asked by countless software arthitéthich is “better”: the hybrid solutions or tpere solutions?
Why are the pure solutions not more extensivelylds#’hat does “better” mean? And how do we know vidhaketter
for this application? But, going further, we intendn@asurethe contending forces amahderstandhem.

In this paper, we report on a particular pieceesfearch into the performance aspects of theseashdige use a
benchmark to compare ODBMS's to ORM tools, withtipalar emphasis on the performance aspects. Arcbbj
persistence benchmark compares solutions by suigetttem to a suite of representative operatio® particular
benchmark we have chosen is OO7, widely used tgoemensively test object persistence performaneeh#ye used
its measurements to compare typical solutions #inatavailable today in the pure and in the hybratldv db4o,
representative of object databases, and Hiberngpeesentative of the ORM stable. Both of thesepaqgular Open
Source products.

Because of its general popularity, reflected by fdnet that most of the large persistence mechamismiders
provide persistence for Java objects, it was decideise Java objects for our studies. A conseguehthis decision is
that the OO7 Benchmark, currently available in Chas had to be re-implemented in Java. The remisrted here
are based on a partial re-implementation of thecherark. Work is currently underway to develop aleful
implementation, but the results reported here a@eessarily limited in scope to re-implemented posi of the
benchmark. This work is therefore a first stepriveistigating object persistence performance. Nahess, we believe
it has yielded information of interest.

In the nineties, when ODBMSs were still rather nthvere were a variety of studies to assess théefoqpeance. For
example, Cattell and Skeen [1992] investigatedpmformance of various RDBMSs against ODBMSs, wiitgey et
al [1993] compared the performance of various ODBMMore recently, Jordan [2004] has made a studgllobf
Sun's persistence mechanisms. It was this latidly shat inspired the idea of comparing ORM togjaiast ODBMS's.

In the next section, the OO7 Benchmark and theoreafor selecting it will be discussed. SectionxBlains the
design constraints in implementing the Java versibthe benchmark. Section 4 discusses the Jawowein more
detail and Section 5 discusses the use of tramssctDur measurements are assessed in Sectiont@&nSe offers our
conclusions and perceptions of future work to beedo

2. BENCHMARKS

Questions about the performance of ODBMS’s arosénguhe late 80's and early 90's, soon after acéceand
commercial ODBMSs were becoming available. It wathe time that several benchmarks were createmdasure
their performance. Well known benchmarks includeghétModel [Anderson et al 1990], OO1 [Cattell ankkén
1992] and OOQO7 [Carey et al. 1993a]. The OO1 benckmas intended to study the performance of enginge
applications. The HyperModel approach was basedaolier versions of the OO1 benchmark. It incorpeataa more
complex model with more complex relationships andvider variety of operations. The HyperModel benahin
focused on the hypertext model. The OO7 benchmaskbvased on both of these benchmarking efforts.

The next section will provide an overview of the DRenchmark and also discuss why this benchmarlselasted
for our benchmarking and comparison investigation.

Proceedings of SAICSIT 2006

Comparing the Performance of Object Databases and ORM Tools e 3

2.1 OO7 benchmark overview

007 was designed to investigate various featurgedbrmance, and it included complex objects whighie missing
from the OO1 and HyperModel benchmarks [Carey e1383a]. While the earlier benchmarks used singleies
results, the OO7 benchmark provided a collectiorestilts. Carey et al [1993a] indicate that thechemark is intended
to investigate 'associative operations, sparseemseltraversals, updates to indexed vs. non-indeftt attributes’,
etc.

The benchmark uses a hierarchy of objects, modelmg@ngineering design library. Each Model contaitiser
BaseAssembly or ComplexAssembly objects. Compleaddy objects contain other BaseAssembly objects.
BaseAssembly objects contain CompositePart objabes, contain AtomicPart objects. AtomicPart olgeetre
connected with each other through Connection objesll of these objects have some basic attribated some
collections representing one-to-one, one-to-mard/ many-to-many relationships. Most of these retetiops are bi-
directional.

This object model is used as the target of varimaxggation and persistence operations. There améigcmation
settings that can be changed to influence the numbeobjects created, the number of models, the bmrnof
connections, etc. The benchmark also has a smellium and a large database configuration whichipgdhe
number of objects to be created in the benchmarkekch of these database configurations it isilplest configure
the number of connections between objects. An elamp this is where an AtomicPart is connected tbeo
AtomicParts and with the use of the configurati@ue we can control the number of these connec{iOagey et al
1993a]. Carey et al [1993a] defined 3, 6 and 9umgasted connection values. In this way, we care lmsmall
configuration with 3 connections, a small configiga with 6 connections, a medium configurationha8tconnections,
etc.

The benchmark contains operations that operatéherdésign library and can be grouped into threegoaies:
traversals, queries and modifications. Althougts¢éhare well-documented in [Carey et al 1993b],oterifeatures of
these operations that are not so obvious will betimeed below. The modification operations retethe insertion and
deletion of objects, and to some of the travergarations that not only traverse the object hiénatzut also modify
the objects by swapping values, renaming them, etc.

Operations are run @&®ld or hot[Carey et al 1993alCold runs are runs where all the caches shouldviye and
hot runs are where caches are full. There is &ksdnt-between notion of a warm run, which referananitial cold run
to fill up the caches, followed by a hot run. Sextb will provide the measurements in regard teehgperations under
both cold and hot running conditions.

One of the early difficulties that arose in attemgtto use the OO7 benchmark was the issue of daeguages
[Carey et al 1994]. Not all of the systems testeehthad query languages, and those that had, hgddges that
differed in capabilities. For those that did novéaguery language capabilities, C++ query methoglewritten in the
hope of enabling comparison across all of the systeCarey et al [1994] conceded that this coulddavsome
implementations with no query language capabilities

This possible bias is avoided in the present stsiige both of the systems that we have chosemvesiigate have
their own object query facilities. Db4o uses SOBinfple Object Database Access) as well as Natiwzieg and
Hibernate uses HQL (Hibernate Query Language).

In selecting a benchmark for comparing our two emotarget systems, the OO7 was a natural primeidabed
Because it has a deep object hierarchy with manyptex relationships (one-to-many and many-to-maityiy well-
suited to assessing non-trivial object orientedliepfons. Furthermore, the fact that the code awailable in C++
meant that it could be converted to Java with nedadase. Finally, we were influenced by the faet it had been used
in the recent past for research studies into gargiSava objects, for example [Jordan 2004].

3. JAVA VERSION OF OO7 BENCHMARK

This section discusses the overall approach toymiod a Java version of the OO7 Benchmark, theciplia utility
classes that were used, and the most important iwaykich our version differs from the original Cversion.

3.1 Overall approach

The Java version was written in two basic stagesiniial attempt took the lead from another Jav@7Orversion that
had been developed and distributed by the Ozone sperce ODBMS [Ozone]. On investigation, it becapparent
that Ozone's Java version was very basic. Not walyit not a full equivalent of the original C++rs®n, but valuable
debugging and configuration settings availablehia C++ version had not been incorporated intdhene version.

In a second stage, the original C++ code that lesh lused for the Versant implementation was takem starting
point. An equivalent Java class was written forhe@e-+ class. Here afif the language structures that were similar
were copied over to the Java version. An examplthisf was where similar language structures (sucfogloops)
were merely copied over from the C++ to the Javaiga. This was done in an effort to stay as closthe original
version as possible. This easily led to a Java eaplévalent of OO7, but which did not yet providey gersistence-
related code. However, this was useful in and eélit as it was deemed desirable to have a puraeimory
representation of the model. This was to servemaalsolute baseline in comparing cold and hot abjperations

Proceedings of SAICSIT 2006

4 e Pietervan Zyl et al.

across different platforms. The idea for doing thés taken from Jordan [2004]. Once the pure J&@ @odel was in
place, the db4o and Hibernate implementations ywerduced. These will be discussed in Section 4.

3.2 Utility classes

A Persistenceclass was designed for use in both the db4o abdrHate implementations. This class was used at all
points in the benchmark model where persistenceneaded. It has methods for saving, deleting, upgla¢tc, hiding

the specific implementation details.

Each implementation then implemented its persigt@acle in a separate utility class whose methods eadled by
methods in thd?ersistenceclass. Followers of Design Patterns may recogttikeas an example of using the Bridge
pattern. The db4o utility class was callbtd4oUtil and Hibernate’s utility clas$jibernateUtil The intention was to
enable us to hide the persistence mechanism usadtfre model. The idea was to use only one modedlta merely
interchange the correct persistence mechanismedlagsen testing the different platforms.

This aspiration was not realized, as it was fourad Hibernate required that the parent of a hidieat object had
to be saved before saving the children. This wadrne for db4o. Thus, the order of calls to thesjsence utility had
to be different in the two implementations. Thicessitated two separate implementations for theptatiorms. The
original C++ OO7 version also used this approachwdfing separate implementations: one for Versamte for
Obijectivity, etc.

3.3 Deviations from the benchmark

The original version of the OO7 Benchmark had aquntation options for using one or many databases#etions (i.e.
database commit points). It was decided not tostigate the difference in using one or many tratsas at this point.
Db4o and Hibernate both provide transaction managenbb4o opens a transaction when the databageersed, so
there will always be a transaction available. Hilag¢e provides transactions through the use of J&&g Transaction
API) or JDBC transactions. In the Hibernate versi@BC transaction were used to commit save andtapdsVe

mention this here in the interests of a more cotepl@derstanding of the basis for comparison.

It was also decided to exclude indexes for seagchimd queries, as we did not want to use any opénrfrmance
enhancements that are available to users of reldt@tatabases.

Additionally, the formula for computing the averaget times was changed by including the time takerihe last
run. Carey et al [1993b] had omitted the last renduse they did want to include the overhead ofngitsn We argue
that commits are an inherent part of the operadimhthey may have quite an important influencehaentimes. Indeed,
in contrast to the original benchmark, instead miviging one big commit at the end, our version outa each time
that an object is added or updated. Thus, the geédrat time calculation has been changed to incilidz the iteration
times except for the first, this iteration time tgihe cold run.

Finally, the original OO7 version included so-cdlleull methods' to simulate work external to the databakese
are calleddoNothind) methods in the code and are implemented asofipd which simply request the system time.
These were not implemented in the Java versiorcesihere seemed to be no need for them. They graragly
intended to aid in simulating the overall time thaduld be taken for an application, and do notteclep the
performance of the respective persistence mecharasmsuch.

4. PERSISTENCE MECHANISMS TESTED

This section discusses the two persistence mecharfisr which OO7 implementations were written. [oaprovides
information about the testing environment.

4.1 TESTING ENVIRONMENT

The benchmark was run on a Fujitsu Siemens laptthp& of internal memory. The 80G hard drive hakige speed
of 4200rpm. The laptop has Mandriva Linux 2006 iagrwith X. Although most applications were shutatowhile
the benchmark was running, some applications ttucaphe data had to remain open. Furthermorelagitep was not
plugged into a network. As a result, there couldiloertain amount of overhead in the measured tir@sever, there
does not appear to be any reason why such overeald influence one persistence mechanism moress than the
other. Nevertheless, as part of future work, thechenark operations will be run on a dedicated mekiith no other
applications running.

4.2 OBDMS IMPLEMENTATION: DB4O

As previously pointed out, both the db4o and theeriate implementations to persist objects werevetkifrom the
Java OO7 code that simply generated objects in memo

Proceedings of SAICSIT 2006

Comparing the Performance of Object Databases and ORM Tools e 5

Often, adding persistence to your Java applicatemuires rather intrusive additions and changegotor code.
There are really three categories of changes redjuielling the persistence mechanismatto persisthowto persist,
andwhento persist.

Telling the mechanism what to persist generally meaarking the target classes and attributes. ¥ample, one
may be required to have your persistent objectdement an interface to mark them as persistenheopart of a
framework (for instance, be an Enterprise Java Bednu may also need to code in a certain way s the
persistence mechanism can recognise patternsxgonge getter and setter methods). Telling it ho\wérsist depends
a lot on the how the mechanism maps in-memory obgaresentations to storage representations. ¥angle, you
may need to run the code through a pre-processopdwsistence code to be added, or specify pensisieelated
information in configuration files. Telling a meaham when to persist is a more difficult matter.general, one is
faced with the choice of storing every change ® abjects in memory to the store (which is highigfficient), or
adopting some scheme which marks objects as ‘didybe stored later, when you tell it to (explicin the code).

Db4o is an open source object oriented databasedlsdy and without extra work to tell it what alnow to persist,
stores Plain Old Java Objects (also known as POJOI®)o does however require us to tell it when ¢osjst. In
general, code to save or update objects in thdspemse store was inserted just after the objedtlieen created or
changed in memory. In this way, producing the diplementation from the OO7 Java code was in fagteq
straightforward.

When using db4o, one needs to keep track of theabed updatedepth andactivationdepth [Db4o 2006]. Update
depth has to do with the fact that when an objeat has a reference to other objects is updateh diil only save the
changes to referenced objects now if the updatthdegreater than 1. This is used to control pentmnce. The default
update depth in db4o is 1. Since the benchmark snage of objects that have sets of referenceshty objects and we
wanted to save all of the changes immediately,dbfault parameter was changed.

Activation depth relates to retrieving objects froine database that reference other objects. DbApifcaeeded,
retrieve the whole object graph referenced by thjeat being retrieved. This can be inefficient, exsally if we don’t
need to use the entire object tree right awayw®en we retrieve an object that has referenceshigr @bjects, we can
defer retrieving the referenced objects until needéis is done by a technique called lazy loadimigere referenced
objects are fetched only when a reference to thefollowed. The tree depth at which this occursalied activation
depth in db4o. By default, db4o specifies activatoepth as 5. In running the benchmark, the a@inadepth was
increased to retrieve the whole referenced objexqily
Db4o can be run as an embedded database, as adogat in the same virtual machine (an embeddeigeand as a
remote server. For our implementation Db4o wasasian embedded database.

4.3 ORMTOOL IMPLEMENTATION: HIBERNATE

Hibernate is an ORM tool that stores in-memory otsj¢o, and retrieves in-memory objects from, atiehal database.
To test Hibernate, we needed to change the in-memersion of the OO7 Java code to make use of iHadier
Hibernate can be used with any relational database used Postgres for our implementation.

To more clearly understand the explanation of hioiw was done, we need to define some of the coscéptbler
[2006] provides the following definitions:

O “Mapping: The act of determining how objects and their retahips are persisted in permanent data storage, in

this case a relational database.

O Property: A data attribute, either implemented gshgsical attribute, such &itring firstName,or as a virtual
attribute implemented via an operation, sucagency getTotal ()

0 Property mapping: A mapping that describes howetsipt an objects property.

O Relationship mapping: A mapping that describes howpersist a relationship between two or more dbjec
(generally, association, aggregation, or compasjtio

O Inheritance mapping: Mapping the inheritance higraito relational database tables.”

In using Hibernate, these mappings can be spedifiechl mapping files or they can be defined in flaea code by
using Xdoclet tags or annotations. We used Hiberixatoclet tags in the code, and extracted the fiags the Java
files, using an ant task, to create the xml mapfiles.

The mapping of the properties was relatively strdi@yward. Most of the time was spent on getting rilationship
and inheritance mappings to work correctly. Thesedéscussed in the following sections.

In the previous section it was mentioned that, wheimg db4o, one can set the activation depth efdbjects
retrieved. It is interesting to note that Hibernateo provides lazy loading, where it is possibldimit the number of
objects returned.

4.3.1 Relationship mappings

Recall that relationship mapping is the mappin@é-to-one, one-to-many and many-to-many relatipsshetween
objects to their chosen relational database reptasens. Most of the types of object oriented tieteship, including
aggregation (is-part-of), are found in the OO7 emark. It was therefore necessary to specify howatadle these in
our Hibernate implementation. This was found tambe of the most difficult parts of the implemertati

Proceedings of SAICSIT 2006

6 e Pietervan Zyl etal.

All the associations in the OO7 model are bi-dimwil, and so one has to consider how to specif§iomal queries
to follow relationship navigation from both ends.

The one-to-many relationships were implementedrdmary relational database primary key / foreigy lentity
relationships. To elaborate: having a class A anthss B in the object model meant having Tabled &ableB in the
relational model, with each row in the tables stgrthe corresponding objects’ attributes. If thsr@ one-to-many
relationship between class A and class B, we reptethat relationship as a column in TableB whielepgs primary
keys from TableA. To access the B objects from aobfect, we select all of the rows in TableB theference the A
object’s primary key as a foreign key. Going thieestway, to access the A object from any B objeetselect the row
in TableA that has the stored foreign key as iary key.

For many-to-many bi-directional associations, wedugoin tables. A join table stores, separatelymfrthe
referenced tables, the primary keys of the relatgdies. Extending the example above to a manydoy relationship
between A objects and B objects, this means artiaddi table, say TableAB, with columns A and Britg the list of
keys of related A’'s and B’s. To access the rel@eabjects from an A object would mean executingiary that found
all of the related B objects’ keys from TableABdatihen retrieved those rows in B that had thoseramsary key.
Navigating the relationship from B’s to A’s is dosienilarly.

4.3.2 Inheritance mappings

According to [Ambler 2006], four basic approachesm de used to map object oriented inheritance tsteg to a

relational model:

O Map the whole class hierarchy structure to onestald. one table containing all of the combinddtaites.

O Map each concrete class to its own table: ie athefsubclasses that inherit from an abstract dassheir own
table.

0 Map each class to its own table.

0 Map the classes into a generic table structure.

The Hibernate supporting literature provides sgi@®to enable one to use any of the approachesaned above
[Hibernate 2006]. In the OO7 Java Hibernate codejeineral, each class was mapped to its own t&hls.'table per
class' strategy [Hibernate 2006] was selected fsec#tuis a straight forward one-to-one mapping. Btrategy of
mappingconcreteclasses to their own tables was used only in ¢aeepnamely to map the OO7 abstract class called
DesignObject and its subclasses: Module, Assen@dynpositePart and AtomicPart.

The mapping of concrete classes approach geneiedhgases the number of tables that are needegacedto the
table per class strategy. However, this approashitsein duplicated information, since the propmesriof the parent class
have to be included in each child class’s table Ipfen2006]. If properties are added later to theepiclass, then they
must be inserted into each child class’s table.

One should keep this complexity in mind when choegsinapping strategies [Ambler 2006]. As the benakma
scenario did not include the addition of propertiaiss complexity was not an issue. Furthermore pfoperties in child
classes were quite simple: a build date, a stypg tand an id. (Note: it was necessary to renam®etiginal ‘id’ field
to ‘design_id’ as there were some conflicts in Hitzte with the name ‘id’.)

4.3.3 Impedance mismatch difficulties

These mapping complexities are necessary to overdchenimpedance mismatch between the object aatioml
models. In general, it is not trivial to map onemtany relationships, many-to-many relationships] arheritance
structures, especially when the application isdaamd changing, and the mapping is manual. Speeisés also
complicate the mapping. For example, mapping asclaat has more than one association to the saass @ not
handled by the simple scheme explained above. ¥ample, in the benchmark model, BaseAssembly hasntany-
to-many mappings with CompositePart, called compteirivate and componentsShared It was decidechpthese
by using a separate join table for each relatignshwo join tables were therefore created, catlechponents_private
andcomponents_sharedach containing the primary keys of the relatede@asembly and CompositePart objects.

It is clear that this kind of manual mapping reqagiffairly intimate knowledge of both the object amthtional
models, and the mechanics of the chosen mappihgsexample, when mapping AtomicParts and theirn@otions, a
problem was encountered that related to order ichwine objects had to be saved. This was manifexdea referential
integrity constraint in the database. (Elmasri &wliathe [1994] describe a referential integrity stomint as the
requirement that a tuple in one relation may nferro a tuple in another relation unless the fatiplealready exist9
This meant that an AtomicPart object had to beadivet before saving a Connection object thairikdd to it

4.4 Overall observation

When creating an implementation of OO7 for a spegiérsistence mechanism, there is bound to bertamncty about
the correctness of the model that is saved. Thereficourse, no magic bullet — no automatic waycheck the
correctness - one has to rely on testing. Thusnwhe Module (the parent class in the OO7 benchyrend its entire
hierarchy tree are saved, the ideal would be thatet should be certainty that the whole tree isectly saved and

Proceedings of SAICSIT 2006

Comparing the Performance of Object Databases and ORM Tools e 7

retrieved. Unit tests for all of the operationsttngodify the model are required to enhance confidethat these
individual parts are working correctly. Althoughiglis envisaged at a later stage, for the interaringerted counters to
both implementations to count the number of objeotaited. We then opened each database and chiecged if the

same number of objects existed.

5. TRANSACTIONS

In db4o we have one transaction and we commit withry save and update. Db4o creates a new tramsacti
immediately after a commit. So there is always tvapsaction available. In the Hibernate versioncveate and use a
new transaction for every save and update, anddatmmit the transaction.

However, Hibernate documentation [Hibernate 2006¢ntions that using “session-per-operation” is not
recommended. By this is meant a new transacti@sssciated with a session with each interactioh thi¢ database.
Thus the approach used in the our benchmark veisidam violation of this recommendation. Prelimipdests have
shown that using “session-per-request” strategyree®mmended by Hibernate, does indggdatly improvethe
Hibernate times. However, our initial experimenbwh that using the same strategy for dijfprovesits times as
well. In fact it appears that db4o continues to peitform Hibernate. We regard it as a matter afiritwork to probe
more deeply into transaction performance. The diskfferent transaction strategies (grouping tratisas, the use of
conversations,etc.) and how many sessions to open ser request, per application, per sessiop,atidl. be
investigated.

6. RESULTS AND OBSERVATIONS

As a matter of convenience it was decided to syarunning thesmall configuration of thedO7 benchmarkvith three
connections The results will be provided and discussed in fillowing sections. We also included in-memory
implementation times to create and traverse ohjéetgive an indication of the times taken for rmuersistence-related
operations. The times for the in-memory implemeotatannot be seen clearly on the graphs as tleepetween 0.02
and 0.2 seconds. However, the operations for guen®l modifications were not implemented for themigmory
version as yet. This will be added in later versi@hfound to be relevant. The results for the linpentations are
grouped and reported below by the type of opergtenformed.

6.1 Creation

The time taken by each implementation to create statk the OO7 model is given in Figure 1. It waand that
Hibernate took almost 2.5 times longer to crea store the model than did db4o. This is a sigaificdifference.
Because object-relational mapping has quite afiignit overhead, if you choose it as your persistemechanism, you
need to be sure that benefits you will enjoy beeahs data is now in relational form and therefgpen to reporting
and data mining tools, should be far greater ttenaverhead you will incur. Although a preliminaagd plausible
explanation is that this difference representsabgct-relational creation and translation overh@édibernate needs
time to create the tables, and map between theynaehted objects and the tables), more detaileiénlying reasons
have not yet been established, and require fuitivestigation.

Creation times
200

180 —

w

- 160 —

=

8 140 ——

Q

£ 120 —

° [In Memory
£ 100 — [l Db4o

= 8 [[] Hibemnate/Postgres
&

c

o 60 — —

@

o 40

20 —

0

Cold

creation

Figure. 1 007 Model creation times

6.2 Traversals

Proceedings of SAICSIT 2006

8 e Pietervan Zyl et al.

Traversal times are a measure of the time thadkiéd to navigate around the entire object modes previously
mentioned, some of the traversals also modify tbdehby calling methods on the objects. Figurespldiys the results
for certain traversals, labeled T1, T2a, T2b, T2, T3b, T3c, T6, T8 and T9. T4, T5 and T7 wereincluded as
they were also not included in [Carey et al 199&arey et al [1993b] found that these did not mtevany further
insight into the performance of traversals and wefeout of the original results. These missingvarsals will be
investigated in future work to see if they mightyide interesting results on these new implemeonati

All the Hot Traversal times

325.000
300.000 1
275.000 —
250.000
225.000
200.000
175.000 [in Memory
150.000 [l Db4o
125.000 [] Hibernate/Postgres
100.000
75.000 — —

50.000 M —
25.000 1 ——
0.000 =

T T T T T T 1
T1 T2 T2 T2 T3 T3 T3 T6 T8 T9
a b c a b c

traversals

response time(seconds)

Figure. 2 Average hot traversal times

It is clear from Figure 2 that, except for the casé T8 and T9, db4o performs traversals through dhject
hierarchy more efficiently than Hibernate. T8 an@ dre traversal operations to find the Module asdassociated
Manual, respectively. These are very short operafi@s there is only one Module in the small daabaith 3
connections. Thus these two traversals do not tsavihe tree, but merely scan the Manual textgtrliis suggests
that traversing the model is the significant diéflece between the two.

Singling out a couple of results for comment, Hiize is approximately 100 seconds slower than db#o
traversals T3C and T6. Traversal T3C is based d Tidnvolves four traversals through all the atoparts as well as
method calls to modify the date, either by incretimgnor by decrementing its value. T3C in the ar@iOO7 version
tested indexing, which was included on the dateeabj Recall that the Java version excluded indexa a
performance enhancement mechanism. T3C thus bgdiealersed 40 000 objects, calling methods omth&gain, it
would seem, therefore, that Hibernate’s slower alldéime in this traversal test relates specifigdth accessing the
objects in a traversal operation.

Traversal T6 traverses the assemblies of the objediel that are private and then traverses their atbmic parts.
In total, 493 root atomic parts are traversed. Thisonsiderably lower than the number of obje@tedrsed in T3C, yet
the time difference between the two persistencehar@sms is about the same. This suggests that riditeetraversals
are specifically slowed down when accessing loweels of the object’s model.

6.3 Queries
Queries were used to find objects in the modelthatched certain criteria. The queries can beifilegss follows:

® Queries on one table/class type using id's to m&éth

® Queries with ranges: Q2, Q3, Q5.

® Queries that find all the objects of one type afst Q7.

e Queries that find objects of type A and then trageheir one-to-many associations: Q4, Q5.

e Queries that find objects of type A and do a “joimith another object B using id's to do the maighiQ8.

All of the queries involve iterating through thesudts returned and sending back a number of objeotsd. Q6 was
not in the original OO7 results as it also did patvide any insight into the performance. For tieigson Q6 was also
not included in our results. Future work might urd it.

As can be seen from Figure 3, Hibernate performsfameQ1 and performs the worst for Q8 (in factbkErnate’s
time for Q8 has been omitted from the graph becéauseight off the scale: 5747.6 seconds). Qlegates 10 random

Proceedings of SAICSIT 2006

Comparing the Performance of Object Databases and ORM Tools e 9

id's and then tries to find the atomic parts thatah those id's. It thus appears that Hibernatipes well in finding

random objects of the same type using an id fongithe matching. It is reasonable to assume tlimtigidue to the
efficiency of simple queries in the relational datae more than compensating for the object-relatianslation, as
compared to the navigation required by the objatalthse in performing the same query.

All the hot query times
300.000
275.000 S
250.000 (B
225.000 (I
200.000 (I
175.000 —F— ey
150.000 - [b0
125.000 _— [:;bel’nate/Postgr
100.000 -

75.000 —
50.000 -
25.000 F -
0.000 == w1 = | B
Ql @2 B A B Q7 Q8
queries

response time (seconds)

Figure. 3 Average hot traversal times

Q8 iterates through 10000 atomic parts and theisfthe current atomic part's associated documenfings all
10000 atomic parts. Q3 is a query where the 10d6fic parts are found and only those that ardénrainge are
returned. It would therefore seem from Q3, Q7 addi@t Hibernate performs badly when it needseiate through a
large number of objects, retrieving and translagagh one to its object form.

The slow performance of Hibernate for Q5 is straagethere aren't many objects involved. Q5 doesekiew
involve finding objects on lower levels and thisittbbe the reason why it is slow.

The general picture conveyed by Figure 3 is thatodueries are fast and that Hibernate is competinly in
isolated cases, where perhaps the performancelaiforeal database part more than compensates &robject-
relational overhead. Hibernate seems generallyidgiert in performing queries that require joins.

6.4 Modifications

Section 2 mentioned that one of the types of OOaratns is called a modification. The modificasan OO7 are
known as structural modifications [Carey et all 3P@nd consist primarily of inserting and deletiolgjects in the
model. The results for our two implementationsdisplayed in Tables 1 and 2 below. The insertioth @eletion times
for db4o are clearly better than those for Hibezr@uch differences are not as dramatic as those atered in the
traversal and queries tests.

Db4o Hibernate
Type of Runs:
Cold Run 6.310 sec 11.291 sec
Avg of Hot Runs 12.020sec 23.4 sec

Table. 1 Insert times

Dbdo Hibernate
Type of Runs:
Cold Run 6.831 sec 7.686 sec
Avg of Hot Runs 13.355 18.711 sec

Table. 2 Delete times

7. CONCLUSIONS AND FUTURE WORK

Proceedings of SAICSIT 2006

10 e Pietervan Zyl et al.

By using a benchmark, it has been possible to coenaad gain insight into the performance aspectsvofobject
persistence mechanisms (object databases vs agbjatibnal mapping to relational databases), asesgmted by two
popular Open Source implementations (db4o and Héie}.

It was found that db4o’s overall performance wakebethan that of Hibernate. Many of the test ressseem to
confirm our rules of thumb (here, that the overhetdbject-relational translation causes ORM-basguementations
to be consistently slower than staying in objeatnfowith an object database). However, a few neeepele
investigation (for example when the object-relatiooverhead is insignificant compared to the edficly of relational
guery handling). When is this the case, and howgadesign applications to take advantage of this?

During our investigation, it came to light that omeeds in depth knowledge about these mechanismsetéhem
correctly and efficiently, with continued reliance vendor input.

Creating the implementations of OO7 for each of¢hgersistence mechanisms, it was found that itpeasible to
get the mappings and the storing of the object inedeng, and that this incorrect behaviour is difflk to identify with
a cursory check of the code and data. An examplehafre this happened in our testing was with thepimg of a
particular many-to-many relationship, where the bmation of incorrect creation of objects and imeot mappings
caused corruption of the relational model. Whilis fierhaps points more to the difficulties of impknting persistence
correctly due to the complexity involved, in theseaf a benchmark, the fact that implementationsbeawrong means
that wrong conclusions can be drawn. This indicttiesabsolute necessity for an auditing proceshézk the results
of implementation creators and vendors.

Interestingly, object-relational mapping wasn't thely one at fault. The nuances of lazy loading aetting
activation depth also caused some incorrect ratrieiobjects until the mechanics were well underdt

Thus, each technology had its unique issues. Semenon issues also surfaced, for instance it waglear when
to use cascade on update, when to use lazy loaalimgywhen to store the objects in the databaseént&resting issue
was also found with Hibernate needing to re-ass®eaia object that was returned from a query witiewa session if the
session was closed after the query run. Db4o didurointo this issue. Perhaps the answer is tiobed in the depths
of the age-old impedance mismatch, here extenditiget differing ideas of sessions in the two warlds

One of the original guidelines that had been detiggon as a basis of our investigation was to eddatures of
db4o and Hibernate in their basic, out of the biakes and not to use any optimizations. This wasgmily to avoid
optimization wars and specific tweaks that would ne obvious to the beginner user. However, sonten@ations
needed to be made, and parameter settings recoretheidmake the comparisons meaningful. For exanugiag the
current db4o version the authors did try the casgcafunctions and found that using too many cassatkgraded
performance, while using well selected cascadesawgul performance. We do intend to extend the sadpeur
research to more advanced features and optimizationexample indexes, lazy loading and cachetheruture.

This paper reports on tHiest findingsof our investigation into the performance of objpersistence technologies.
Future work will included comparing other technaésy like the persistence aspects of the new JDG2d EJB 3.0
specifications. We also intend to provide a tesstriework for OO7 to verify that it has been correatiplemented and
that the correct operations are performed in apst Hibernate and db4o will also be compared berobbject
databases and other ORM tools. The medium and fogégurations of the OO7 benchmark will be useduture
work.

The random connection of AtomicParts, BaseAssenaloly Composite parts needs some investigation,her t
simple reason that the same object model shoulgbeé in each case for fair comparisons.

Further, the authors would like to investigate aadnpare the findings in using some of the othercherarks,
especially the new PolePosition [PolePosition] iemark. Investigation into issues at more of an iggctural level
should also be investigated, for instance a coraparibetween distributed (client-server) and singlachine
implementations, and a multi-user benchmark [Catel 1994].

We need to update our version of the OO7 Benchitackeate larger databases, as hardware has inthamvkthe
database sizes in the original benchmark are somalipared to database sizes of today. Future wolk algo
investigate the scalability of these implementation

8. REFERENCES

AMBLER, S.W. 1998.Building Object Applications That Work Your StepSigp Handbook for Developing Robust Systems WitjecO
TechnologySIGS Books/Cambridge University Press, New York.

AMBLER, S.W. 2006 Mapping Objects to Relational Databases: O/R MagpimDetail www.ambysoft.com/mappingObjectsTut.html

ANDERSON, T., BERRE, A., MALLISON, M., PORTER, HAND SCHNEIDER, B. 1990. The HyperModel benchmark, Rroceedings
Conference on Extending Database Technqldgsnice, Italy, March 1990, F. BANCILHON, C. THAN®OAND D. TSICHRITZIS, Eds.
Springer-Verlag Lecture Notes 416, 317-331.

CAREY, M. J., DEWITT,D.J, NAUGHTON, J. F. 1993a. The OO7 Benchmark. Rroceedings of the 1993 ACM SIGMOD International
Conference on Management of DaWashington, D.C, United States, May 1993, PETRRNEMAN AND SUSHIL JAJODIA, Eds. ACM
Press, New York, NY, USA, 12-21.

CAREY, M. J., DEWITT,D.J,NAUGHTON, J.F. 1993b. The OO7 Benchmark. CS Tech Report, Usityeof Wisconsin-Madison, April 1993.

CAREY, M. J., DEWITT,D.J,NAUGHTON, J.F. 1994. A Status Report on the OO7 OODBMS BenckimguEffort. In Proceedings of the Ninth

Annual Conference on Object-Oriented Programmingte8ys, Language, and Applicatipffortland, Oregon, United States, 1994, ACM Pridssy

York, NY, USA, 414-426.

Proceedings of SAICSIT 2006

Comparing the Performance of Object Databases and ORM Tools e 11

CATTELL, R.G.G, BARRY, D., BERLER, M., EASTMAN, JJORDAN, D., RUSSELL, C., SCHADOW, O., STANIENDA,, VELEZ, F., 2000.
The Object Data Standard: ODMG 3Morgan Kaufmann Publishers, San Francisco.

CATTELL, R.G.G, 1991.0Object Data Management: object-oriented and ex@endelational database systemAddison-Wesley Publishing
Company.

CATTELL, R.G.G, SKEEN, J., 1992. Object Operati@echmark ACM Transactions on Database Syste¥d. 17, No. 1, 1-31.

DB40. 2006 Db4o Tutoria) http://www.db4o.com

ELMASRI R., AND NAVATHE S.B. 1994 Fundamentals of Database Systerfike Benjamin/Cummings Publishing Company Inc, Sdco

Edition.

HIBERNATE. 2006 Hibernate Reference Manudittp://hibernate.org

JORDAN, M 2004 A Comparative Study of Persistence Mechanisnthédava™ Platform, September 20B84p://research.sun.com/techrep/2004

OZONE, http://www.ozone-db.org
POLEPOSITION http://www.polepos.org

Proceedings of SAICSIT 2006

