Molten salt-directed synthesis method for LiMn$_2$O$_4$ nanorods as a cathode material for a lithium-ion battery with superior cyclability

Kebede, Mesfin A
Ozoemena, Kenneth I

ABSTRACT:

A molten salt synthesis technique has been used to prepare nanorods of Mn$_2$O$_3$ and single-crystal LiMn$_2$O$_4$ nanorods cathode material with superior capacity retention. The molten salt-directed synthesis involved the use of NaCl as the eutectic melt. The as-synthesized LiMn$_2$O$_4$ nanorods cathode material showed superior electrochemical performance compared to the LiMn$_2$O$_4$ sample obtained via the solid state method. The as-synthesized LiMn$_2$O$_4$ nanorods maintained more than 95% of the initial discharge capacity of 107 mA h g$^{-1}$ over 100 cycles at a rate of 0.1 C, whereas the LiMn$_2$O$_4$ sample synthesized using the solid state reaction method maintained 88% of the initial discharge capacity of 98 mA h g$^{-1}$ over 100 cycles at a rate of 0.1 C. Compared to the literature, the molten salt-directed method for the preparation of high-performance LiMn$_2$O$_4$ is simpler and less expensive, with greater potential for industrial scale-up.