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Abstract. In electro thermal atomic absorption spectrometry (ET AAS) 

with graphite tube atomizer the sample is evaporated from the centre of 

the tube and vapour released from the open ends.  The rate of the 

vaporization process is defined by the thermo-chemical properties of the 

sample and the temperature of the tube.  The atoms present in the cavity 

of the tube absorb light, thus creating an analytical signal. 

A one-dimensional model describing the diffusion of atoms in the tube 

atomizer is suggested.  The considered tube consists of a number of 

sections having different cross-sectional areas.  The model is based on 

the solution of the non-homogeneous one-dimensional diffusion equation 

with diffusion coefficient depending on temperature over the entire (non-

homogeneous) domain. 
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The analytical solution of the problem was found in terms of Green’s 

function.  The corresponding orthogonal system of eigenfunctions is a set 

of continuous functions with discontinuous derivatives. 

 

1 INTRODUCTION 

 

In electrothermal atomic absorption spectrometry (ETAAS) a graphite 

tube atomizer is used as a sample vaporizer and light absorption cell.  The 

tube, normally about 18-30 mm in length and 4-5 mm in diameter 

(depending on the manufacturer), is resistance heated according to the 

pre-set temperature program.  Normally, 5-50 µL of the sample solution 

is injected in the centre of the tube through the dosing hole, which is 1.2-

1.5 mm in diameter.  The tube is step-wise heated providing sequential 

drying, pre-treatment and atomisation temperatures.  During the 

atomisation step maximum power is applied to obtain a fast heating ramp 

and a temperature above 2000 0C, where it is held for 1-5 s.  The element 

to be determined (analyte) is vaporized during the atomisation ramp and 

hold time and its vapour is released through the open ends of the tube via 

diffusion or other mechanisms of mass transfer.  The atomic vapour 

selectively absorbs radiation from the light passing through the tube, thus 

providing a transient analytical signal.  Absorption peak height or 

integrated absorbance after calibration indicates the amount of analyte in 

the sample [1]. 

 

The analyte vapour can be in atomic and molecular form.  The degree of 

atomisation depends on matrix, volatility of chemical compound and gas-

phase temperature during vaporization and vapour transport.  Since only 

atomic vapour is detected, presence of molecular constituents is 

associated with the analytical errors (interferences).  Minimization of the 
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interferences requires chemical modification of the analyte or increase of 

gas temperature in the analytical volume. 

 

In practice both methods are used simultaneously.  The sample is placed 

on a special flat or concave substrate (platform) located in the tube and 

having low thermal contact with the wall (platform furnace).  At the 

atomisation step the platform is heated mainly via radiation, and its 

temperature lags behind that of the tube.  When the sample is vaporized, 

the degree of atomisation increases due to a higher gas phase temperature.  

The modification is provided via introduction of excessive amounts of 

other chemicals together with the sample and long thermal pre-treatment 

at 500-1000 0C. 

 

Although broadly used, those methods are prone to substantial 

limitations.  The sample, independent of its origin, must be kept on the 

platform.  This requirement necessitates the platform area to be about 1 

cm2.  Nevertheless, even this is not enough to prevent the spilling of some 

organic liquids beyond the platform.  A large platform requires a large 

tube for accommodation, and that puts additional strain on the power 

supply and reduces the heating rate.  The presence of a large, relatively 

cool surface in the tube reduces the average gas temperature [2], and slow 

heating deteriorates the vaporization kinetics, thus affecting the limits of 

detection.  The injection of excessive amounts of other chemicals 

increases the probability of contamination and long thermal pre-treatment 

slows down the analysis. 

 

It was earlier suggested [3] to substitute the platform for a compact body 

(e.g. cylinder) or refractory material loosely located on the bottom of the 

tube (ballast).  In a tube furnace furnished with a ballast, the sample 
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location is not critical.  That is, the solution to be analysed can be injected 

on the top of the ballast or on the wall next to it.  When the temperature 

of the tube rises rapidly, the temperature of the ballast lags behind.  

Therefore, if the sample is vaporized from the tube wall, its vapour 

undergoes condensation on the colder ballast and then re-evaporation into 

the absorption volume.  Compared to the flat or concave platform, a 

compact ballast of similar mass to the platform should have less impact 

on gas temperatures because of the smaller surface area.  Both sample re-

evaporation and higher gas temperature should cause reduction of spectral 

and chemical interferences. 

 

Possible impact of the idea to practice might be embodied in the 

reduction of detection limits without the use of chemical modifiers, faster 

determination and direct analysis of organics.  An opportunity to apply 

ballasts in tube atomizers of various sizes and configurations, present in 

the instrumental market, can also be attractive. 

It is shown that the performance of the ballast furnace should depend on 

multiple parameters including configuration and dimensions of the tube, 

physical parameters of the ballast, heating rate, temperature and vapour 

transport [4,5].  An optimal combination of all those parameters should 

provide a low limit of detection and independence of measured signals 

from the matrix. 

 

A simulation of processes in the ballast furnace was performed earlier [4] 

using the admission about quasi-stationary distribution of vapour in the 

tube during the sample vaporization.  Although it introduces a variety of 

crucial factors, the approach used in [4] can not provide a guiding line for 

optimisation since it is inconsistent with rapid heating and vaporization.  

The approach to general solution is presented in this work. 
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2 MODEL OF DIFFUSION, GOVERNING EQUATIONS 

 

Figure 1 shows a schematic cross-sectional view of the atomizer.  The 

ballast is assumed to have no effect on the diffusion of atoms through the 

open ends of the atomizer.  Since the atoms diffuse from the centre of the 

atomizer, diffusion is assumed to be symmetrical with respect to the 

centre of the atomizer.  That is, it is necessary to consider one half of the 

atomizer only. 

 

Suppose that u1(x,t) is the concentration of  atoms at some point x (in 

domain D1) and time t, and u2(x,t) is the concentration of  atoms at some 

point x (in domain D2) and time t.  To describe the physical model of 

diffusion, let the concentrations u1(x,t)and u2(x,t) satisfy the diffusion 

equations: 
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in the domains D1 and D2. 

 

The function f1(x,t) is the density of the sources of atoms in the atomizer 

at some point x and time t, and characterizes the rate of vaporization of 

the sample. The diffusion coefficient D(t) depends on time through 

temperature: 
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where D(t) is the diffusion coefficient at time t, D0 is the initial value of 

the diffusion coefficient, Tw(t) is the temperature of the atomizer wall at 

time t, T0 is the initial temperature of the atomizer wall, and λ  is the gas 

combination factor.  The value of the diffusion coefficient, D0, can vary 

between 0.05 and 0.1 cm2.s-1 for various methods.  As shown in [6], the 

value of the gas combination factor, λ , can vary between 1.60 and 2.00. 

 

The temperature of the atomizer wall is given by the heating program of 

the atomizer, which can be defined by a piecewise continuous function: 
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where Tw(t) is the temperature of atomizer wall at time t, T0 is the initial 

temperature of atomizer wall, Tf is the final temperature of atomizer wall, 

α = (Tf - T0)/tc is the heating rate of atomizer, and tc is the time taken to 

heat the atomizer to temperature Tf.  The initial temperature of the 

atomizer wall can vary between 293 and 1073 K.  The final temperature 

of the atomizer wall can vary between 1500 and 3000K.  The heating rate 

of the atomizer can vary between 2×103 and 1×104 K.s-1. 

 

The rate at which the quantity of analyte atoms on ballast surface is 

reduced due to vaporization may be described by the Arhenius-type 

equation [7,8] 
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subject to the initial condition 

                                                 N N( )0 0=                                              (5) 

N(t) is the quantity of analyte atoms on the ballast surface at time t, N0 is 

the initial quantity of analyte atoms on the ballast surface, ∆H is the 
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enthalpy of formation of free atoms, R is the universal gas constant, k0 is 

the frequency factor, and Tb(t) is the temperature of the ballast at time t.  

Typically, a few micro litres of sample are introduced into the atomizer, 

and the initial quantity of analyte atoms on the ballast surface, N0, thus 

depends on the physical properties (such as atomic mass) of these atoms.  

The enthalpy of formation of free atoms, ∆H, can vary between 50 and 

300 kJ.mol-1. 

 

The ballast is heated by radiation from the walls of the atomizer, and its 

temperature, Tb(t), is given by the Stefan-Boltzmann equation [4]: 
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where σ  is the Stefan-Boltzmann constant, Eb is the emissivity of the 

ballast material, cb is the heat capacity of ballast material, ρb  is the 

density of ballast material, Sb is the surface area of ballast, and Vb is the 

volume of ballast. 

 

The problem (4)-(5) can be easily solved to reveal that the quantity of 

atoms on the ballast surface at any time t, N(t), is given by: 
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Hence, the rate at which the analyte atoms are supplied to the furnace is 

given by 
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The rate at which the concentration of analyte atoms in the furnace 

changes as a result of vaporization is: 
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where f1(x,t) is the density of the sources of atoms in the tube, q(t) is the 

rate of atom formation in the tube, A1 is the cross sectional area of the 

tube (in domain D1), and bl  is the length of the ballast.  That is, the 

concentration of analyte atoms in the furnace changes at a rate equal to 

f1(x,t) in a small volume 21 blA .  It is assumed that f1(x,t) is distributed 

uniformly along the x-axis.  Since half of the atomizer is considered in 

this model, it is necessary to use only half of the length of the ballast in 

this calculation. 

 

3 BOUNDARY AND INITIAL CONDITIONS 

 

Equations (1) must be solved with the following boundary and initial 

conditions: 
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t = 0:            u x1 0 0( , ) ,=        u x2 0 0( , ) =                      (14) 

Condition (10) follows from symmetry of the problem about x = 0. 

Condition (11) follows from the requirement that the solution be 

continuous at x = L1.  Condition (12) follows from the requirement that, at 

x = L1, the concentration of atoms per unit time diffusion out of section 1 
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of the atomizer (domain D1) must be equal to that diffusion into section 2 

(domain D2).  Conditions (11) and (12) are typical for problems of 

mathematical physics with a non-homogeneous medium [9,10].  

Condition (13) prescribes a value to the concentration gradient at the open 

end of the atomizer (x = L2) at any time t.  Condition (14) describes the 

initial concentration of free atoms in the tube. 

 

At this point it is convenient to introduce a new unknown function 
~ ( , )u x t2  

                                    u x t u x t x t2 2( , ) ~ ( , ) ( , )= + ψ                              (15) 

representing the deviation of u2(x,t) from a certain known function 

ψ ( , )x t .  The auxiliary function ψ ( , )x t  is chosen as 
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Substitution of equation (15) into the diffusion equations (1) and 

boundary and initial conditions (10)-(14) shows that u1(x,t) and ~ ( , )u x t2  

are the solutions of the following diffusion equations: 
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subject to the homogeneous boundary and initial conditions:  
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4 EIGENVALUES AND EIGENFUNCTIONS 

 

Let us introduce the following notation for system (17): 
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Using the Fourier method, we search for the solution of (25) in the form 
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The functions X1(x) and X2(x) must satisfy the boundary conditions (18)-

(21).  Substituting (26) into the partial differential equations (17), with 

f1(x,t) = f2(x,t) = 0, shows that X1(x) and X2(x) must satisfy the ordinary 

differential equations 
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The unknowns, b1, b2, and µ can be found by substituting (26) and (28) 

into the boundary conditions (18)-(21).  This results in a system of 2 

equations and 3 unknowns: 
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This system defines the eigenvalues of problem (27)-(28).  The system 

(29) can be solved simultaneously to get a transcendental equation with 

respect to the eigenvalues µ : 
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This transcendental equation has enumerable solutions µn ≤ 0 .  The 
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where b1n = 1, and b2n is derived from the equation 

                                          
( )
( )b

l

l
n

n

n

2

1

2

=
cos

cos

µ
µ                                            (32) 

for every particular µn. 

 

It is possible to prove that the eigenfunctions (31) are orthogonal with 

respect to a weight function w(x): 

 w X d A X X d A X X dn

L

n m

L

n m
L

L

( ) ( ) ( ) ( ) ( ) ( )ξ ξ ξ ξ ξ ξ ξ ξ ξ
0

1 1 1
0

2 2 2

2 1

1

2

∫ ∫ ∫= +    (33) 

for n m≠ , where 

                                     w x
A x L

A L x L
( )

,

,
=

≤ ≤
≤ ≤





1 1

2 1 2

0
                              (34) 

When n = m, we have the square norm: 
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5 SOLUTION OF THE PROBLEM 

 

Now that the eigenfunctions and eigenvalues of the problem have been 

found, the solution to equation (25) can be sought in the form of an 

eigenfunction expansion: 
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where the functions υn(t) are unknown.  The function f(x,t) may also be 

written as an eigenfunction expansion: 
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where the Fourier coefficients, fn(t), can be found using the orthogonality 

relation (33): 

                        f t
X x

w X f t dn

n

n

L

( )
( )

( ) ( ) ( , )= ∫
1

2
0

2

ξ ξ ξ ξ                      (38) 

Substituting (36)-(37) into (25) gives: 
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Substituting (42) into (36) gives: 
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The function ( )G x t, , ( )ξ κ  is the Green’s function [9-11] of the problem 

(17)-(22), and is defined as 
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The solution of problem (1), (10)-(14) is therefore given by 
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It is now possible to find the quantity of atoms in the furnace at any time t 

by integrating u(x,t) over x and multiplying by the cross-sectional area of 

the furnace: 
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6 RESULTS 
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The results are exposed here in the form of an example, where the derived 

model is applied to a hypothetical problem. 

Consider a tube with dimensions given in table 1. 

Table 1.  Dimensions of graphite tube atomizer 

Parameter Symbol Value Scale 

Length of section 1 of atomizer l1 1.0×10-2 m 

Cross-sectional area of section 1 of atomizer A1 1.96×10-5 m2 

Length of section 2 of atomizer l2 3.25×10-3 m 

Cross sectional area of section 2 of atomizer A2 7.07×10-5 m2 

 

The ballast onto which the sample is introduced is a length Tantalum (Ta) 

wire with a diameter of 0.2mm.  The dimensions of the ballast and 

physical properties of Ta are given in table 2.  Note that the condition of 

symmetry does not apply to the calculation of the temperature of the 

ballast.  Since the entire surface area and volume must be taken into 

account, the entire ballast must be considered when making these 

calculations. 

Table 2.  Dimensions and physical properties of ballast 

Parameter Symbol Value Scale 

Stefan-Boltzmann constant σ  5.671×10-8 J.s-1.m-2.K-4 

Length of ballast lb 1.0×10-2 m 

Surface area of ballast Sb 6.35×10-6 m2 

Volume of ballast Vb 3.14×10-10 m3 

Density of Ta [12] ρb  1.66×104 kg.m-3 

Emissivity of Ta at 1500 K [12] Eb 0.2 - 

Specific heat capacity of Ta [12] cb 160 J.kg-1.K-1 
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The parameters of the heating program applied to the tube are given in 

table 3.  The temperature of the furnace wall, Tw(t), and the temperature 

of the ballast, Tb(t), are plotted in figure 2. 

Table 3.  Heating program of atomizer 

Parameter Symbol Value Scale 

Initial temperature of atomizer wall T0 300 K 

Final temperature of atomizer wall Tf 2500 K 

Heating rate of atomizer wall α  2000 K.s-1 

Duration of temperature ramp tc 1.1 s 

 

Suppose that a sample containing a known quantity of lead (Pb) atoms is 

introduced to the atomizer.  The dependence of the diffusion coefficient 

of the Pb atoms on time (through temperature) is shown in figure 3.  The 

rate of atomization will depend on the physical properties of the analyte 

atoms (Pb), given in table 4.  The quantity of atoms on the ballast surface, 

N(t), and the rate of atom formation in the atomizer, q(t), are plotted in 

figure 4. 

Table 4. Physical properties of analyte atoms (Pb) 

Parameter Symbol Value Scale 

Initial number of atoms in sample N0 1×1015 atoms 

Universal gas constant R 8.314 J.mol-1.K-1 

Enthalpy of formation of free 

atoms [7] 
H∆  195×10-3 J.mol-1 

Frequency factor [7] k0 1×107 s-1 

Diffusion coefficient [6] D0 6.0×10-6 m2.s-1 

Gas combination factor [6] λ  1.75 - 
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The concentration of atoms at some point x and time t in the furnace, 

u(x,t), is plotted in figure 5.  Notice the “jump” in derivative at x = L1.  

This is a property of the eigenfunctions (31). 

 

The quantity of atoms in the furnace at any time t, U(t), can now be found 

by integrating the concentration distribution u(x,t) over x (47).  Figure 6 

shows the normalised quantity of atoms in the atomizer versus time, 

U(t)/N0. 

 

7 CONCLUSION 

 

A one-dimensional model for diffusion of atoms from a graphite furnace 

atomiser used in ETAAS was proposed. 

 

A time-dependant model of diffusion is most frequently used in graphite 

furnace design [7-8].  The configuration of the atomizer is introduced into 

the model by means of a geometric factor.  The model proposed in this 

paper automatically incorporates the geometry of the atomizer into the 

solution.  In addition to evaluating the number of atoms in the atomizer, 

the proposed model could also be used to evaluate the distribution of 

atoms in the atomizer at any time t.  This is not possible using the time-

dependant model. 

 

An analytical solution for the proposed model was found in terms of a 

Green’s function containing piecewise continuous trigonometric 

eigenfunctions. 
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List of Notations 

Symbol Description Scale 

α  Heating rate of atomizer K.s-1 

)(tφ  A function resulting from separation of variables of ),(~ txu  atoms.m-3 

)(tϕ  Value of concentration gradient at open end of atomizer atoms.m-4 

)(tκ  Integral of diffusion coefficient m2 

λ  Gas combination factor - 

nµ  nth eigenvalue  m-1 

bρ  Density of ballast material kg.m-3 

σ  Stefan-Boltzmann constant J.s-1.m-2.K-4 

)(tnυ  nth Fourier coefficient of ),(~ txu  atoms.m-3 

),( txψ  
Auxiliary function introduced to homogenize boundary 

conditions 
atoms.m-3 

A1 Cross-sectional area of section 1 of atomizer m2 

A2 Cross-sectional area of section 2 of atomizer m2 

b1n Coefficient of nth eigenfunction in section 1 of atomizer - 

b2n Coefficient of nth eigenfunction in section 2 of atomizer - 

cb Heat capacity of ballast material J.kg-1.K-1 

D(t) Diffusion coefficient of atomized particles m2.s-1 

D0 Initial value of diffusion coefficient of atomized particles m2.s-1 

Eb Emissivity of ballast material - 

f1(x,t) Density of sources of atoms in section 1 of atomizer atoms.m-3.s-1 

f2(x,t) Density of sources of atoms in section 2 of atomizer atoms.m-3.s-1 

f(x,t) Density of sources of atoms in atomizer atoms.m-3.s-1 

fn(t) nth Fourier coefficient of f(x,t) atoms.m-3.s-1 
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( )G x t, , ( )ξ κ  Green’s function m-1 

g(x) Initial concentration distribution of atoms in atomizer atoms.m-3 

gn nth Fourier coefficient of g(x) atoms.m-3 

Symbol Description Scale 

H∆  Enthalpy of formation of free atoms J.mol-1 

k0 Frequency factor s-1 

lb Length of ballast m 

l1 Length of section 1 of atomizer m 

l2 Length of section 2 of atomizer m 

L1 x-coordinate of end of section 1 of atomizer m 

L2 x-coordinate of end of section 2 of atomizer m 

N(t) Quantity of atoms on ballast surface atoms 

N0 Initial quantity of atoms on ballast surface atoms 

q(t) Rate of atom formation in atomizer atoms.s-1 

R Universal gas constant J.mol-1.K-1 

Sb Surface area of ballast m2 

T0 Initial temperature of atomizer wall/ballast surface K 

Tf Final temperature of atomizer wall K 

Tb(t) Temperature of ballast material K 

Tw(t) Temperature of atomizer wall K 

tc Duration for which atomizer is heated at a rate of α  s 

U(t) Quantity of atoms in atomizer atoms 

u1(x,t) Concentration of atoms in section 1 of atomizer atoms.m-3 

u2(x,t) Concentration of atoms in section 2 of atomizer atoms.m-3 

),(~
2 txu  

Concentration of atoms in section 2 of atomizer resulting 

from homogenization of boundary conditions 
atoms.m-3 

),( txu  Concentration of atoms in atomizer atoms.m-3 

Vb Volume of ballast m3 
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w(x) Weight function m2 

Xn(x) Eigenfunction corresponding to nth eigenvalue - 
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Figure 1. Schematic diagram of domain showing dimensions of atomiser 
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Figure 2.  The temperature of the furnace wall (dashed line) and the 
temperature of the ballast (solid line) versus time. 
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Figure 3.  Dependence of the diffusion coefficient of the atomized Pb on 
time. 
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Figure 4.  The number of atoms on the ballast surface (dashed line) and 
the rate of atom formation in the atomizer (dotted line) versus time. 
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Figure 5.  The x - t concentration distribution of atoms in the furnace. 
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Figure 6.  Normalized quantity of atoms in the atomizer versus time. 


