A guideline for public entities on cost-efficient procurement of PV assets
31st European PV Solar Energy Conference and Exhibition (EU PVSEC 2015), Hamburg, Germany

T BISCHOF-NIEMZ, KT RORO*

CSIR Energy Centre, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa

*Corresponding author (e-mail: Kroro@csir.co.za) – www.csir.co.za

INTRODUCTION
Traditionally, when public entities buy an asset under an Engineering, Procurement and Construction (EPC) contract, the screening of the responses to the request for proposals is done in two stages: In a first stage, all proposals that are technically acceptable are then evaluated according to the financial offer (in most cases this will be the PIC lump-sum price in million Euros).

In the case of buying a PV asset, this approach can be problematic, because evaluating proposals based on PIC price will inevitably lead to the tenderers offering only the minimum required installed capacity (in kWp) at the minimum quality, because any “over-delivery” in terms of scope or quality will lead to an increase in PIC price and thus to a lower chance of winning the tender. The CSIR Energy Centre therefore applied a methodology that can be applied by public entities in South Africa and elsewhere in the world to allow the procurement of PV assets at the lowest possible lifetime cost, measured in Lifetime Cost of Electricity (LCOE). The methodology was successfully implemented in the procurement of the CSIR’s first 560-kWp, ground-mounted, single-axis tracker PV system on the main campus of the CSIR in Pretoria, South Africa. A very competitive LCOE and a very high quality PV system were achieved.

AIM
To define a methodology that can be applied by public entities in South Africa and elsewhere in the world to allow the procurement of PV assets at the lowest possible lifetime costs, measured in LCOE.

METHODOLOGY
The procurement of assets by a public entity based on lifetime cost considerations is generally desirable, but very often difficult to achieve, because the lifetime benefits of an asset are difficult to forecast. It is however possible if the right methodology is applied. This is specifically true for PV plants, because the performance is easy to measure (energy output in kWh).

The CSIR Energy Centre developed a methodology which is the first of its kind in the South African public procurement context for PV that allows evaluation of proposals for the purchase of a PV asset in an EPC contract based on LCOE. The methodology includes a “control loop” to ensure actual delivery of the promised LCOE.

RESULTS AND DISCUSSIONS

• Wind and solar PV have reached “new-build” parity
 • LCOE from wind/PV ≤ LCOE of all new build options (system view)
 • LCOE of roof-top PV in South Africa (5.7-6.4 €/kWh per kW) is below residential electricity tariffs (7-10 €/kWh; kWh without VAT) “retail grid parity” already achieved!
 • Huge incentives for public entities who are also electricity customers (e.g. schools, hospitals, government buildings etc.) to install PV systems to supplement their grid supply (“first movers”)
 • Care should be taken to buy PV assets at lowest LCOE as opposed to EPC price

• Across the four windows of REIPPPP, the price of PV dropped by 75 %
• The price of 5.72 €/kWh compared favorably with the 5.69 €/cents in kWh pricing from Round 4 REIPPPP
• A PV plant of relatively small scale in Pretoria, not the sunniest region in South Africa, can achieve very well with large, utility-scale projects in the sunniest parts of South Africa

REFERENCES

CONCLUSION
An approach of procuring PV assets which looks at LCOE of a PV investment was developed for incorporation into the evaluation process of a public PIC tender. The defined methodology was applied in the procurement of a first 560-kWp PV system with single-axis tracker configuration and achieved very competitive LCOE of 5.69 €/kWh per kW. It will now be made available to other public entities as a guideline to procure PV assets (rooftop or ground-mounted) lifetime-cost optimally.

Figure 1: Cost comparison of alternative new-build options for the South African power system

Figure 2: Screen shots of CSIR-developed Excel-based model showing inputs requested from bidders, and outputs to be used in the CSIR LCOE calculations and outputs.

Figure 3: Justification behind using Grid for PIC calculations

Figure 4: Comparison of the results of the first four Bid Windows of the South Africa’s Department of Energy procurement programmes for renewable energy Independent Power Producers (IPPs) with the CSIR’s PV plan

Figure 5: Picture of the CSIR PV plant after 8 weeks

K-12723 [www.kashan.co.za]