Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

Presented by: Mr Lebogang Thobakgale

Supervisor: Dr Patience Mthunzi-Kufa, CSIR National Laser Centre Co-supervisor: Prof Malik Maaza, University of South Africa, Physics

Outline

- Background on embryonic stem cells (ES)
- Phototransfection
- Objectives of the study
- Results
- Discussion and Conclusion

Background on embryonic stem cells (ESCs)

 ESCs are non-specialized cells, that are capable of producing all cell types in a multicellular organism

Human ES

Mouse ES

Properties: Self-renewal, Potency, Differentiation

Potency levels of ES

Totipotent- all types, zygote

Pluripotent- blastocyst, germ layers

Multipotent- related cell types, adult stem cells, red and white blood cells

Oligopotent- Adult, lymphoid, myeloid

Unipotent- Only one type, muscle

Induced pluripotent- Adult ES genetically reprogrammed to pluripotency

Zygote

Blastomere

Blastocyst

Culture in Incubator

Pluoripotent
Stem Cells

Hemopoiteic Neural
Stem Cells

Stem Cells

• Karla K et al. Stem Cell: Basics, Classification and Applications. American Journal of Phytomedicine and Clinical Therapeutics. 2014, 27, pg 919-930

Therapeutic applications of ES

Regeneration therapy

- Diabetes- pancreatic β cells
 Fibroblasts, DiPS
- Parkinson's disease- iPS, dopaminergic neurons

Transplantation

- Autologous- bone marrow, tissue defects, leukemia
- Haematopoietic- blood dieases, autoimmune disorders
- Mesenchymal- neurological disorders

our future through science

Phototransfection

 Transfection refers to the delivery of genetic material (DNA, RNA) into live cells to induce a change in phenotype or functionality.

An illustration of photo-transfection using laser pulses. K. Dholakia et al. "Optical Micromanipulation," Chem. Soc. Rev. 37, 42 (2008)

 Photo-transfection is specific DNA/RNA delivery using photons. Noninvasive. No latent chemical or viral side effects.

our future through science

Objectives of the study

- Design and build an optical set up for phototransfection
- Porate mES in the presence of fluorescent plasmid GFP.
- Image and compare mES post transfection
- Analyze cell viability using molecular assays: ATP and LDH

Results: Optical set-up design

It: sapphire Femtosecond laser, 800nm

Femtosecond laser set up

1 kHz Ti: sapphire laser, Pulse duration <130 femtoseconds, Beam diameter 10-15mm. Average power 1 Wattz. 800nm

Imaging post irradiation

Phototransfection: mES porated using laser powers from 2-20uW. 15ug/ml pGFP in cell media. 24 hours post irradiation

Control

Chemical transfection, 2ug/ml pGFP

Fluorescent image

2uW, 10ms

6 uW, 10ms

8uW, 10ms

20uW,10ms

Cell viability assay

ATP: cell well being

LDH: cell death, necrosis

ATP Luminescence assay

ANOVA test n = 3 : F(5,12) = 59.7, p<0.025.

LDH Absorbance assay

n= 3 F(5,12) = 4.79, p<0.025

Discussion and Conclusion

- **Fluorescence imaging**: Control mES morphology intact after 24hrs, no fluorescence. Phototransfection causes physical changes to cells more than chemical transfection, the latter shows similar fluorescence to the irradiated cells. Increase in laser power induces more drastic changes to the mES with complete differentiation seen at 8uW and 20uW. Highest fluorescence seen at 20uW due to relatively increased entry of pGFP.
- ATP and LDH: Control has highest ATP and lowest LDH, consistant with relatively good cell
 health. Transfection experiments lowered ATP and increased LDH, with chemical transfection
 values being less than phototransfection in LDH, higher in ATP. High laser powers (8 and
 20uW) show less ATP and less LDH, this may be caused by poration of floating cells.
- **Conclusion**: Phototransfection was successful in delivery of pGFP into mES. Poration of monolayer cells at powers between 2-6 uW may lower extent necrosis and improve viability.

References

- Karla K et al. Stem Cell: Basics, Classification and Applications. American Journal of Phytomedicine and Clinical Therapeutics.2014,27, pg 919-930
- K. Dholakia et al. "Optical Micromanipulation," Chem. Soc. Rev. 37, 42 (2008)
- Massumi et al. 'Efficient programming of human eye conjunctiva derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cell, EXPERIMENTAL CELL RESEARCH322 (2014) 51–61
- Srilatha B et al. 'Potency of Various Types of Stem Cells and their Transplantation'. J Stem Cell Res Ther2011, 1:3
- Mthuzi P. et al. Enhanced photo-transfection efficiency of mammalian cells on graphene coated substrates. SPIE 2014. Vol. 8944 89440K-1

Acknowledgements

Thank you

