Photo-transfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

Presented by: Mr Lebogang Thobakgale
Supervisor: Dr Patience Mthunzi-Kufa, CSIR National Laser Centre
Co-supervisor: Prof Malik Maaza, University of South Africa, Physics
Outline

• Background on embryonic stem cells (ES)
• Phototransfection
• Objectives of the study
• Results
• Discussion and Conclusion
Background on embryonic stem cells (ESCs)

- ESCs are non-specialized cells, that are capable of producing all cell types in a multicellular organism.

Human ES
Mouse ES

- Properties: Self-renewal, Potency, Differentiation
Potency levels of ES

Totipotent - all types, zygote

Pluripotent - blastocyst, germ layers

Multipotent - related cell types, adult stem cells, red and white blood cells

Oligopotent - Adult, lymphoid, myeloid

Unipotent - Only one type, muscle

Induced pluripotent - Adult ES genetically reprogrammed to pluripotency

Therapeutic applications of ES

Regeneration therapy
- Diabetes- pancreatic β cells
 - Fibroblasts, DiPS
- Parkinson’s disease- iPS, dopaminergic neurons

Transplantation
- Autologous- bone marrow, tissue defects, leukemia
- Haematopoietic- blood diseases, autoimmune disorders
- Mesenchymal- neurological disorders
Transfection refers to the delivery of genetic material (DNA, RNA) into live cells to induce a change in phenotype or functionality.

Photo-transfection is specific DNA/RNA delivery using photons. Non-invasive. No latent chemical or viral side effects.
Objectives of the study

- Design and build an optical set up for phototransfection
- Porate mES in the presence of fluorescent plasmid GFP.
- Image and compare mES post transfection
- Analyze cell viability using molecular assays: ATP and LDH
Results: Optical set-up design

- It: sapphire Femtosecond laser, 800nm
- ¼ waveplate
- Polarizing beam splitter
- Silver Mirror
- Laser beam
- Koehler Illumination
- Dichroic mirror box
- 60x Objective lens
- Sample stage
- 60x Objective lens
- Focusing lenses
- ND Filter wheel
- Shutter
- CCD camera
- Computer
1 kHz Ti: sapphire laser, Pulse duration <130 femtoseconds, Beam diameter 10-15mm. Average power 1 Wattz. 800nm
Imaging post irradiation

Phototransfection: mES porated using laser powers from 2-20uW. 15ug/ml pGFP in cell media. 24 hours post irradiation

Control

Chemical transfection, 2ug/ml pGFP

Fluorescent image
2uW, 10ms

6 uW, 10ms
8uW, 10ms

20uW, 10ms
Cell viability assay

ATP: cell well being

LDH : cell death, necrosis

ATP Luminescence assay

LDH Absorbance assay

ANOVA test n= 3 : F(5,12)=59.7, p<0.025.

n= 3 F(5,12) = 4.79, p<0.025
Discussion and Conclusion

• **Fluorescence imaging**: Control mES morphology intact after 24hrs, no fluorescence. Phototransfection causes physical changes to cells more than chemical transfection, the latter shows similar fluorescence to the irradiated cells. Increase in laser power induces more drastic changes to the mES with complete differentiation seen at 8uW and 20uW. Highest fluorescence seen at 20uW due to relatively increased entry of pGFP.

• **ATP and LDH**: Control has highest ATP and lowest LDH, consistant with relatively good cell health. Transfection experiments lowered ATP and increased LDH, with chemical transfection values being less than phototransfection in LDH, higher in ATP. High laser powers (8 and 20uW) show less ATP and less LDH, this may be caused by poration of floating cells.

• **Conclusion**: Phototransfection was successful in delivery of pGFP into mES. Poration of monolayer cells at powers between 2-6 uW may lower extent necrosis and improve viability.
References

• Massumi et al. ‘Efficient programming of human eye conjunctiva derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cell, EXPERIMENTAL CELL RESEARCH322 (2014) 51–61

• Srilatha B et al. ‘Potency of Various Types of Stem Cells and their Transplantation’. J Stem Cell Res Ther 2011, 1:3

Acknowledgements
Thank you