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ABSTRACT

This research investigates changes in the electromagnetic (EM) sig-
natures of a cryptographic binary executable based on compile-time
parameters to the GNU and clang compilers. The source code is
compiled and executed on the Raspberry Pi 2 which utilizes the
ARMv7 CPU. Various optimization flags are enabled at compile-time
and the output of the binary executable’s EM signatures are cap-
tured at run time. It is demonstrated that GNU and clang compilers
produced different EM signature on program execution. The results
indicated while utilizing the optimization flag O3 the EM signature
of the program changes. Additionally, the g++ compiler demon-
strated fewer instructions were required to run the executable, this
related to fewer EM emissions leaked. The EM data from the various
compilers under different optimization levels was used as input
data for a correlation power analysis attack. The results indicated
that partial AES-128 encryption keys was possible. In addition, the
fewest subkeys recovered was when the clang compiler was used
with level O2 optimization. Finally, the research was able to recover
15 of 16 AES-128 cryptographic algorithm’s subkeys.
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1 INTRODUCTION

It is well known that cryptographic algorithms are used to protect
and hide secret information from eavesdroppers. While these algo-
rithms are mathematically secure, the technique of Side Channel
Analysis (SCA) to break and recovering secret information from
cryptographic algorithms has been well documented [12, 20, 21].
The basic concept of SCA attacks is to measure the power con-
sumption or electromagnetic (EM) emissions of a device while it
executes the cryptographic algorithm. The SCA locates a corre-
lation between the consumption and intermediate values of the
algorithm which can be used to reveal the secret information [20].

The capturing of EM emissions allows the adversary to mount
attacks remotely without the user’s knowledge. In addition, EM
based attacks are not limited to the traditional attacks against em-
bedded device. However, it can be used against devices running
at frequencies ranging in the high MHz or even GHz spectrum
[3, 10, 15, 17, 25]. At these higher frequencies of 600MHz — 1GHz,
or higher than 1GHz, basic antennas or near-field probes are used
to capture the EM signature and uncover secret information.

Today, these high frequency devices are situated in our homes
offering a range of functionality from controlling electrical appli-
ances to running the security system of a household. Unknown
by the members in the household these devices are being attacked
remotely as nations around the world attempt to enforce laws that
enables backdoors and remote access to devices or cryptographic
schemes. It becomes important to evaluate all aspects of the devel-
opment chain. One of these aspects is the compilation of source
code to executable binaries.

This research investigates the differences in the EM emissions
produced from a cryptographic binary that has been compiled by
different C/C++ compilers and utilizes various optimization flags.
The experiments are performed by utilizing a Raspberry Pi 2 with
the ARMv7 CPU. Furthermore, this research aims to answer the
following questions:

(1) Do different C/C++ compilers emit different EM emissions?

(2) What is the effects on the EM signature of an executable
binary as optimizations are enabled?

(3) Can sensitive information be recovered from these EM emis-
sions?

(4) Would the various compilers optimizations assist in obfuscat-
ing information or enhancing the recovery of information?
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The remainder of this paper is organized as follows: Section 2
discusses the SCA attacks utilizing EM emissions against high fre-
quency devices; a brief overview of the compilers and the opti-
mization flags is describe in Section 3; followed by Section 4 which
details the methodology of this research; the experiments, results
and analysis is elaborated in Section 5; and finally the paper is
concluded with a discussion in Section 6.

2 ELECTROMAGNETIC ATTACKS

This section discusses the side channel analysis attacks involving
electromagnetic (EM) attacks against high frequency devices such
as smartphones and systems utilizing ARM processors.

As a program executes on the device, an electrical current passes
through that device. These electrical impulses emits EM radiation
and subsequently can be used to retrieve secret information [12].
In addition, the adversary does not require direct contact with the
device and is able to capture EM data without tampering with the
device. Therefore, EM attacks are less intrusive than the conven-
tional attacks via power analysis [3, 14, 15].

A SCA attack utilizing EM data was carried out against a Java
based cellphone by Aboulkassimi et al. [1]. Unfortunately, they
added an intrusive factor by placing a MicroSD extension cable
onto the MicroSD card to extract EM information. In addition, Goller
and Sigl [17] attacked an Android smartphone executing public
key cryptography algorithm. However, the smartphone’s shielding
plate was removed.

Nakano et al. [28] targeted the RSA and elliptic curve cryptog-
raphy (ECC) encryption implementations contained in the Java
Cryptography Extension (JCE) on a smarthpone. The battery and
metal covers were removed to assist in recovering EM data. There
is no mention of the device specification, only that the device was
running at 832 MHz.

Successful attacks against the Elliptic Curve Digital Signature
Algorithm (ECDSA) implementation of Android’s BouncyCastle
library was demonstrated by Belgarric et al. [3] and Genkin et al.
[14] concurrently. However, Belgarric et al. followed an intrusive
approach by placing the magnetic probe within the smartphone,
whereas Genkin et al. situated the magnetic probe in close prox-
imity of the device, hence a less intrusive approach. Genkin et al.
demonstrated the vulnerabilities of an iOS and Android devices
where the ECDSA signing keys from OpenSSL were recovered.
Furthermore, secret keys from the Corebitcoin application were
recovered.

A Differential Power Analysis (DPA) attack against the bitsliced
AES encryption algorithm executing on a BeagleBone Black Cortex-
A8 processor running at 1 GHz on a development board was success-
ful performed by Balasch et al. [2]. Additionally, Longo et al. [25]
carried out a similar attack against the same development board.
Vulnerabilities were demonstrated in both cases against the sym-
metric key encryption. However, in both studies reveal that the EM
probe was physically glued onto the area of leakage and focused on
specialized hardware with a proposed hardware countermeasure.

The researchers in [10] demonstrated the ability to recover par-
tial AES-128 cryptographic keys from the Crypto++ library which
executed on a Raspberry Pi. The Raspberry was set to operate at a
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fixed 600 MHz utilizing the Lubuntu 16.04 Operation System. Fur-
thermore, it was demonstrated that the Raspberry Pi was vulnerable
against the CPA attack.

This section describes the vulnerabilities high powered devices
has to SCA attacks. Additionally the research faced similar issues
with the alignment of the captured traces. Table 1 illustrates the
alignment techniques used by the fellow researchers. In addition,
digital signal processing techniques used to enhance the signal
are provided. It is noted that this research aims to investigate the
leakage of various compilers and not attempt long range attacks.

The table indicates that the various researchers utilized different
techniques in order to align the captured traces. Furthermore, a
range of digital signal processing methods were used by the re-
searchers. A fixed technique is not used, thus depending on the
potential attack various alignment and digital signal processing
techniques can be used.

3 COMPILERS

This section discusses the basic concept of a compiler and elaborates
on the inner workings of the GNU Compiler Collection (GCC)! and
clang? compilers.

A compiler translates source code from a high-level program-
ming language to machine code which the Central Processing Unit
(CPU) interprets. In addition, compilers forms a link between high-
level languages and the underlying hardware. Furthermore, a com-
piler verifies code syntax, performs run-time operations, and pro-
cess the output according to the assembler and linker conventions
[8].

A compiler consists of three stages [19]. These stages are the
front, middle, and back end. The syntax and semantics are verified
in the front end. In addition, lexical and syntax analysis are per-
formed to inform the user of any errors or warnings in the source
code. Furthermore, the front end generates an intermediate repre-
sentation (IR) of the source code which is processed by the middle
end.

Optimizations are carried out in the middle end such as the
removal of useless code, repositioning of loops that require less
resources, and so forth. This results in an optimized IR which is
sent to the back end.

The optimized IR is further analyzed and additional optimiza-
tions are performed in the back end. These may include optimizing
the code for a particular target hardware and the out of this stage
produces machine code specialized for a particular processor and
operating system.

3.1 GNU Compiler Collection

The GCC compiler is produced by the GNU Project. The standard
compiler for most Unix Operating Systems is the GCC compiler
[34]. Two option are available to compile C/C++ code - gcc for C
and g++ for C++ source code -~ The gcc and g++ commands invokes
the compiler which converts the source code into machine code
and produces a complete executable binary.

These compilers utilizes the three stage process. A parser is used
to produced syntax trees from the source code in the front end.

Uhttps://gec.gnu.org/
Zhttps://clang llvm.org/
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Table 1: Various trace alignment and digital signal processing techniques.

Research

Alignment Techniques

Signal Processing

Aboulkassimi et al. [1]

Spectral Density based Approach (SDA) and
Template based Resynchronization Approach
(TRA)

Nakano et al. [28]

High & Low pass filters, Kalman filtering, and
Threshold-based Wavelets transforms.

Balasch et al. [2]

Acknowledge traces were misaligned. However,
there was no mention of alignment techniques.

Longo et al. [25]

Least squares technique.

Belgarric et al. [3]

A sleep function was used.

FIR (Finite Impulse Response) filter weighted
with a Hamming window at a cutoff frequency
of 50kHz. Followed by a high-pass filter.

Genkin et al. [14]

Locate specific patterns and create a template
which locates reassurances of the specific pat-
tern in other traces.

Singular Spectrum Analysis (SSA). Followed by
an FIR low—pass filter to suppress noise outside
the 0-125 kHz band.

Frieslaar and Irwin [10]

Elastic alignment, peak detection and the sum of
absolute differences (SAD). Savitzky and Golay

Low and high pass filters was utilized. Followed
by, quadratic demodulation

filters.

GCC first utilized LALR parsers generated with Bison [23]. How-
ever, hand-written recursive-descent parsers [27] are used today
to support C++ source code. The trees are converted to the middle
end’s input representation of language-independent trees which is
known as GENERIC or GIMPLE form [29] . GENERIC is more com-
plex as apposed to GIMPLE , which is a simplified GENERIC, where
various constructs are lowered to multiple GIMPLE instructions.

Compiler optimizations and static code analysis techniques are
applied to the trees. These work on multiple representations, mostly
the architecture-independent GIMPLE representation and the ar-
chitecture dependent RTL representation. Finally, machine code is
produced using architecture-specific pattern matching .

3.2 Clang

Clang was designed to replace the GCC compiler [22]. It works
in conjunction with the Low Level Virtual Machine (LLVM) [22].
This combination allows to replace the full stack of the GCC com-
piler. It is based on a library-based design which facilitates in the
incorporation of other applications.

Since clang is a library-based architecture it aids the compiler to
be integrated with tools that interact with source code, such as an
integrated development environment (IDE) graphical user interface
(GUI). In comparison with GCC, which utilizes compile-link-debug
cycle, it becomes difficult to integrate with IDEs.

More information is retained during the compiling process as
apposed to GCC. The original code is preserved, which make it
easier to map errors back into the original source. The error reports
are more detailed and specific in such a way that IDEs can index the
output of the compiler during compiling. Furthermore, the parse
tree supports automated code refactoring, as it directly represents
the original source code.

3.3 Compiler Optimizations

As mentioned before the compilers has various optimization [13, 24]
which can be used to increase the execution time. Table 2 displays
the optimizations for the the GNU and clang compilers. To enable
an optimization the -O is used followed by the optimization flag
[32]. As seen in the table, the optimization flags can range from

Table 2: A comparison between the optimizations of the

GNU and clang compilers.

Compiler

Flag gee/g++
No optimization is performed and
the source code is complied in the

0 most straightforward way possible.

clang
No optimization is performed
at this level, the compiler gener-
ates the fastest and most debug-
gable code.

This level enables the most common
forms of optimization which does
1 not require any speed-space trade-
offs. With this option the resulting
executables should be smaller and
faster than with -O0.

A minimal optimization level
which lays between O0 and O2.

This option turns on further opti-
mizations, in addition to those used
2 by O1. These additional optimiza-
tions include instruction scheduling.
Only optimizations that do not re-
quire any speed-space tradeoffs are
used.

This is a moderate level of op-
timization which enables most
optimizations and reduces the
code size.

This option turns on more expen-
sive optimizations, such as function
3 inlining. The speed of the resulting
executable is increased. However,
the size is increased as well. Under
some circumstances where these op-
timizations are not favorable, this
option might actually make a pro-
gram slower.

This is built on the previous
optimization, except that it en-
ables optimizations that take
longer to perform or that may
generate larger code.

Os enables all O2 optimizations and
s performs further optimizations re-
ducing source code size.

The same as O2 with extra opti-
mizations to reduce code size

-Ofast enables all O3 optimizations.
Furthermore, it enables optimiza-

fast | . .
tions that are Fortran-specific.

Enables optimizations for debug-
ging

The same as O1 with debugging
optimizations

Oz is based on Os but reduces
code size further.

01 - 03, Os, Ofast, Og and Oz. Each flag has it’s own optimization
parameters. An example of invoking the parameters would be “gcc
-03" or “clang -0O1".
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Optimizations are mainly used to increase the performance of a
program. However, this research aims to investigate the possibility
of utilizing the optimizations as a security feature in terms of pro-
tecting against SCA attacks. Furthermore, this research will focus
on the optimizations ranging from O1 - O3.

4 METHODOLOGY

This section details the methods used to acquire, process and utilize
data in order to recover secret information from a Raspberry Pi.
The Raspberry Pi has been selected as it can used for a range of
functionality such as home automation [18], industrial usage [31]
and sensors used to retrieve critical information [7], amongst others.
Since the device can be utilized in a variety of tasks, it is imperative
to evaluate this device as any comprise to the device can lead to a
major data breach. Furthermore, the equipment used in this research
is discussed in Section 4.1.

Figure 1 illustrates the process followed to retrieve the secret
information. The procedure consists of three phase: the data ac-

Data Acquisition

Execute AES-128
Algorithm

L Capture Input Text |—» Data

Preprocessing

Capture EM Data [—»{ Data Transformation

Alignment Digital Filtering

v

Attack Procedure

v

Secret Key

Figure 1: The flow diagram of the attack procedure.

quisition; post-processing and attack phase. These phases will be
further discussed in Sections 4.2 — 4.5.

4.1 Equipment

The research makes use of the Raspberry Pi 2 Model B which is
the second generation Raspberry Pi [30]. It includes A 900MHz
quad-core ARM Cortex-A7 CPU with 1 GB RAM. The ARMv7 pro-
cessor, enables the device to install a full range of ARM GNU/Linux
distributions. Furthermore, the ARM A7 architecture is found in
many smartphones.

Two Raspberry Pi 2’s, the FUNcube Dongle Pro+ [11] software
defined radio (SDR) and a CW505 Planar H-Field Probe [5] was
used in this research to recover EM data from a Raspberry Pi. The
FUNcube dongle Pro+ and the H-Field probe is depicted in Figure
2b. The FUNcube dongle Pro+ dongle receiver contains a software-
adjustable mixer and a 192kHz ADC, accessed via USB as a sound-
card audio interface to receive radio frequencies. It has a range of
presents for the input bandwidth, ranging from 44.1 kHz - 384 kHz.

Ibraheem Frieslaar and Barry Irwin

(a) The Raspberry Pi. (b) SDR and EM Probe

Figure 2: Additional equipment used. (a) The Raspberry Pi 2
Model B and (b) The FUNcube SDR dongle Pro+ (r) with the
CW505 Planar H-Field Probe (1)

For more information on the dongle, the reader is referred to the
specifications page [11].

4.2 Data Acquisition

This section discuses the approach this research used to retrieve
useful information from the Raspberry Pi. The procedure can be
seen in Figure 3. This process is part of the capture EM data and
data transformation as seen in Figure 1.

The procedure starts by capturing raw signals using the SDR.
The raw signal is processed in GNURadio [16] where a low and
high pass filter is applied. GNURadio is a free software develop-
ment toolkit that provides signal processing blocks to implement
software-defined radios and assist in signal-processing systems.
The resultant signal is sent to a signal processing program called
Baudline where the region of interest is extracted. The region of
interest is sent back to GNURadio where quadratic demodulation
is applied, followed by another low pass filter. Upon completion
the data is saved and transfered to the post processing phase as
depicted in Figure 1.

Capture Signals
using SDR

v

Apply Filtering
LP/HP in GNURadio

v

Extract Desired Signals
using Baudline

¥

Send Desired Signal to

Apply "
GNURadio > Quadratic Demodulation [3» Apply Low Pass Filter

save Signal to File

|

Figure 3: The flow diagram of the process used to extract
useful information from the Raspberry Pi.

The EM data capturing comprised of utilizing two Raspberry
Pi’s. The first device served as the victim, while the secondary Pi
was the attacker. The Lubuntu 14.04 operating system with the
Linux 3.18.0-20-rpi2 kernel were used on both devices. No services
in the Operating System was disabled. Furthermore, to limit the
CPU from using internal step-up controls to adjust power and CPU
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frequency the victim’s maximum CPU frequency was configured
to 600 MHz. This research followed the approach by [14] and [2] to
limit the CPU frequency. Furthermore, no adjustments were made
to the secondary device.

The FUNcube dongle was inserted into a USB port in the attack
device and GNURadio was used to interface with the device. Figure 4
illustrates the experimental setup, on the right is the attacker with
the FUNCube dongle and the H-Field probe connected to it. While
the EM probe is placed over the CPU of the victim.

Figure 4: The experimental setup of the two Raspberry Pi’s

4.3 Analyzing Data

This section elaborates on the techniques used to analyze the cap-
tured EM emissions into meaningful information.

There are three stages that the EM data can be analyzed [9, 28].
The first stage consists of computing the fast Fourier transform
(FFT) over the baseband waveform. This process establishes a fre-
quency signature for various operations, as different operations
produces a specific pattern. Figure. 5 illustrates the raw signal after
it has been processed through a FFT. The signal was obtained by
monitoring the desired 600 MHz frequency in real time via the SDR.

WWW‘RLW-¢MW.WW-WWM-WA»LWW«~»ww‘.M-‘w‘w

Frequency

Figure 5: The fast Fourier transform at 600 MHz.

The second stage is to determine the region of interest at the
point of leakage, which can be visually determined. Figure 6 depicts
the amplitude domain, with the arrow pointing to the power spike
which is the point of interest. A more defined representation of the
point of interest is demonstrated in Figure 7.

[:' <= Amplitude
iy

s
E

Figure 6: The point of interest in the amplitude domain at
600 MHz.

Frequency

Figure 7 depicts the data in the amplitude domain, rotated 90°for
a better visual representation. The region of interest is displayed in
the figure by a rectangle. This illustrates to adversary the location in
time and the type of EM signature produced for a certain procedure.
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EM Emission

Figure 7: The region of interest highlighted in the amplitude
domain as an execution is performed on the Raspberry Pi.

The third stage is to apply digital filtering which removes noise
in the signal. Once the noise has been removed, the signal can be
evaluated. This will be further discussed in detail in Section 4.4.

While the victim executes the cryptographic program, the ad-
versary uses GNURadio to intercept the EM emissions from the
Raspberry Pi. The adversary captures the EM emissions per exe-
cution. The data is captured at 384kHz, as sampling at a higher
rate allows for more data to be obtained. A low and high pass filter
with a cut off frequency of 25kHz and a transition width of 15kHz
was applied to the signal. Once the execution of the test programs
completes, the signal data is stored and sent to Baudline.

The point of interest is extracted and sent back to GNUradio
for further digital processing where quadratic demodulating is
applied which is followed by, an additional low pass filter with
37.5kHz as a cut off frequency and 18.75kHz as transition. The cut
off frequency of 37.5kHz is determined by utilizing the Raspberry
Pi’s baudrate and dividing it by three and the transition width is
determined by dividing the cutoff frequency of 37.5kHz by two.
Figure 8a demonstrates the signal passed through the FFT with no
filter, followed by Figure 8b which illustrates the signal after it has
been through a low and high pass filter.

;;;;;

(a) No filtering applied. (b) Digital filtering applied.
Figure 8: A comparison of the signal (a) no filtering and (b)
with filtering

4.4 Preprocessing

This section describes the techniques used to transform the usable
data into data that can be used by the attack procedure to recover
the secret key from a AES-128 cryptographic implementation on
a Raspberry Pi. These procedures form part of the prepocessing
procedure depicted in Figure 1.

The data acquired in the previous section was captured unsyn-
chronously thus, the data needs to be aligned. Figure 9 depicts the
process used to align the data, as well as recovering secret infor-
mation. Furthermore, this research follows the approach by [10] to
align the captured EM data from a Raspberry Pi.

Firstly, the signal is segmented into three smaller partitions. Each
partition is aligned by using the elastic alignment technique [33].
After alignment the signal is concatenated into a one large signal.
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Attack |—>I Resync

Elastic Alignment

Attack

Exit

Figure 9: The flow diagram to align the signal and recover
secret information [10].

The resultant signal is used as input data for the attack or it can
be sent to the denoising procedure. If the attack procedure is suc-
cessful, i.e: secret information has been recovered, exit the routine,
or else move to the resync procedure. Peak detection and the sum
of absolute differences (SAD) techniques are used to compensate
for trigger jitter and phase shift in order to resync the data. Once
the resyncing procedure is completed the adversary could either
send the data to attack procedure or apply denoising to the data.
Furthermore, he could apply elastic alignment before sending the
data to the attack procedure.

4.5 Attack Procedure

This section discusses methods used in the attack procedure as
first depicted in Figure 1 to retrieve the secret keys of the cryp-
tographic implementation of AES-128 algorithm. The Correlation
Power Analysis (CPA) attack is used as the side channel analysis
attack.

The correlation equation is required to determine a correlation
between the key guesses and the EM emissions. For a detailed ex-
planation of the mathematical approach of the correlation equation
the reader is referred to [4]. The correlation equation is as follows.

52 [ha i = hi)(ta s - )]

VIR (s = )2 SR (ta - )2

Where g ; is the captured EM trace, with the total number
of traces D and hy ; is the hypothetical values produced by the
Hamming weight power model [26].

The attack on the AES-128 cryptographic algorithm commences
as the secret key is sent to the S-Box round of the AES-128 algo-
rithm. The Hamming weight power model is implemented with a
guessing procedure. The system iterates one subkey at a time and
guesses every possible outcome for that subkey. These guess values
range from 0 - 255. The next phase is to calculate the correspond-
ing intermediate value of that guess. The value of each guess is

1

rij =
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converted to its binary representation of the value, with the total
number of 1’s summed up to determine the weight. This is referred
to the hamming weight power model [26]. The AES-128 algorithm
has 16 subkeys [6] and since each subkey is attacked one at a time
there is only 2'2 possibilities, instead of 212 possibilities to predict
the correct secret key.

It is noted that a negative correlation is possible. However, the ab-
solute value is taken. Furthermore, to achieve a ranking system the
correlation of each guess is stored and the guess with the maximum
correlation is predicted to be the subkey.

5 EXPERIMENTS, RESULTS, AND
ANALYSIS

This section discusses the impact the various C/C++ compilers had
on the EM spectrum. The compilers used was the gec, g++, and clang
compilers. Furthermore, this section comprises of Section 5.1 where
the EM signatures from the various compilers are discussed and
Section 5.2 details the recovery of secret information by utilizing
the EM emissions from a Raspberry Pi.

5.1 EM Leakage

This section discusses the experiments and results obtained from
capturing the EM data from the AES-128 cryptographic programs.
Each program was compiled by the various compilers

The experiments consisted of compiling the AES-128 algorithm
of liberypto++ within the pThread environment [10]. In addition,
the compilers were set to use various optimization parameters.
Furthermore, the EM emissions were captured as the program exe-
cuted.

The first set of experiments focused on compiling the program
with g++ with the optimizations flag O. The g++ optimizations
range from O0 — O3. Figure 10 depicts the EM leakage from the
cryptographic program compiled with different optimization flags.

08 08
05 08

04 04

02 02 ‘

06 08

EM Emissions
EM Emissions

08 08

o 500 1000 1500 2000 2500 3000 o 500 1000 1500 200 250 3000
Paints Points

(a) 00. (b) O1.

1 1

08 08

E%WMWWWWWWWW

0 00 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Yo
=%
=
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(c) 03. (d) 02.

Figure 10: The EM leakage from the cryptographic program
compiled with g++ using different optimization flags.
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It is observed a similar pattern occurs from Figures 10a - 10c,
these are the optimizations flags of 00, O1, and O3. However, the
optimization flag of O2 resulted in a different EM signature than
the rest which is evident Figure 10d where the power spikes are
less profound.

The next set of experiments consisted of investigating the effects
the gcc compiler had on the EM signatures. The gcc optimizations
range from OO0 — O3. Figure 11 illustrates the EM leakage from the
cryptographic program compiled with gce using different optimiza-
tion flags.

08 Pattern A 08 Pattern A
06 08

MWWWM W i

o 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

€M Emissions
€M Emissions

08 Pattern B

_Pattern A_

EM Emissions
EM Emissions
&

0 500 1000 1500 2000 2500 ) 500 1000 1500 2000 2500 3000 3500

Points Points

(c) 02. (d) 03.

Figure 11: The EM leakage from the cryptographic program
compiled with gcc using different optimization flags.

Figures 11a — 11c depicts that using the optimization flags of
00 - 02, has a similar EM signature. However, Figure 11d - O3
flag — demonstrates a different EM signature from the rest. More
data points are used, thus relating to a greater power draw as more
spikes are prevalent as well.

The third set of experiments focused on the effects the clang
compiler had on the EM signatures. The clang optimizations range
from O0 - O3, Os, Ofast, and Oz. The EM leakage from the crypto-
graphic program compiled with clang using different optimization
flags is depicted in Figure 12.

Figures 12a — 12c illustrates utilizing the optimization flags of
00 - 02, has a similar EM signature. However, Figure 12d - O3 flag
— demonstrates a different EM signature from the rest. A greater
power draw was used as seen by the increase in data points, i.e: the
data points end at 3500.

Figure 13 starts by illustrates the point of spawning the pThread
inside the main method for the g++ output.

Figure 13a displays that utilizing the optimization OO0 resulted
in the use of the str; load, and cmp instructions as apposed to only
using a mov instruction as seen in Figures 13a and 13b marked
by the A pointing to the code, respectively. Before reaching the
instruction set of (vevt.f32.532 s14, s13), the optimization O3 only
had two instructions where as with the flag O0 enabled, many
instructions were required. This relates back to the data in Figure
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Figure 12: The EM leakage from the cryptographic program
compiled with clang using different optimization flags.

10d as fewer data points were used and the power spikes was fewer
as the optimization flag O3 was used. This is further confirmed
from Table 2 as optimization O3 reduces execution time.

The comparison between the assembly code using optimization
flags O0 and O3 for the clang compiler is displayed in Figure 14.

A reoccurring theme is illustrated as the code indicates that
utilizing the optimization flag O3 produces less machine code. Al-
though, the code is shorter, there are additional instructions such
as (vevt.f64.32) used in optimization O3, depicted in Figure 14b
by the annotation A pointing to the instruction. The (vevt.f64.f32)
instruction converts between single-precision and double-precision
numbers. This explains why the EM signature in Figure 12d was
different from the rest of the EM signatures produced by the clang
compiler as double precision uses twice as many bits as single, 32
bits for a single and 64 bits for a double. As more bits are used,
more bus lines are required, hence more power(data points) are
generated.

This section discussed the effects the gcc, g++, and clang com-
pilers had on the EM signature of a cryptographic program. The
AES-128 cryptographic program within the multi-threaded frame-
work of pThreads was used as the base program. As the program
was compiled, different optimization flags were used. The results
indicated that using the optimization flag of O3 changes the EM
signature of the program. Furthermore, the assembler code was
analyzed and the g++ implementation displayed that fewer instruc-
tions were required which related to fewer EM emissions leaked.
Although, fewer instructions were used by the clang compiler the
EM trace had more data points which ties back to Table 2 as it is
possible that the code would have a longer run time. Furthermore,
The analysis showed that using the optimization flag of O3 in the
clang compiled had enable the usage of double precision numbers
which required more bits and power to be used.
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9cz:  f7ff fffe bl 0 <pthread_create>

9c6:  61b8 str o, [r7, #24]

9cB: - 69bb dr 3, [r7, #2a]<——A
9ca: 2b0o cmp r3, #

9cc: - dola beg.n  aB4 <main+Oxac>

9ce: f240 0000 movw ro, #0

9d2: f2co 0000 movt re, #0

ode: f240 0100 movw rl, #0

9da: f2c0 0100 movt rl, #0

9de: f7ff fffe bl 0 < Z5t1sIStllchar_traitsIcEERSt13basic
9e2 4603 mov r3, re

9ed 4618 mov ro, r3

9e6 69b9 ldr rl, [r7, #24]

Qe8: f7ff fffe bl 0 < ZNSolsEi>

9ec 4603 mov r3, ro

Gee 4518 mov ro, r3

afe f240 0100 movw rl, #08

9f4: f2c0 0100 movt rl, #

ofg: f7ff fffe bl @ < ZNSolSEPFRS0S E>
afc: fo4f 30ff mov.w  r@, #4294967295

ELLH f7ff fffe bl 0 <exit>

a0d: 693b ldr r3, [r7, #16]

a06: 3301 adds r3, #1

as8:  613b str r3, [r7, #16]

aBa:-  693b dr 3, [r7, #16]

adc: - 2boe cmp r3, #0

abe: ddb5 ble.n  97c <main+0x24>

ale: f71f fffe bl 0 <clock>

ald:. 618 str o, [r7, #28]

ale 69fb ldr r3, [r7, #28]

als: eefb 3a90 vmov s13, r3

alc: eeb8 7aeb vevt. £32.532 s1l4, s13

az2e 697b ldr r3, [r7, #20]

a22: eedb 3a90 vmov s13, r3

a26: eef8 7aed vevt.£32.532 s15, s13

aZa: ee?7 7ab7 vsub. 32 515, s14, s15 =——— B
aze: edc7 7a08 vstr 515, [r7, #32]

a32: ed97 7a08 vldr s14, [r7, #32]

a36:  eddf 7all vidr  s15, [pc, #68] ; a7c <main+Ox124>

(a) Optimization flag 00.
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40:  f7ff fffe bl 0 <pthread_create>

44: 4604 mov rd, ro

46: bb18 cbnz rd, 90 <main+0x90>

48:. fiff fffe bl 8 <clock>

4c: f240 0100 mov rl, #0

50: f2c0 0100 movt rl, #0

54: 4606 mov. ré, r@

56: f240 0ooo Mo ro, #0

5a: f2c0 0000 movt ro, #0

Se: fIff fffe bl ® = Z5t1sIStllchar_traitsIcEERSt13basic ost
62: eel@b 6a90 vmov s13, r6

66: eddf 7al4 vldr 515, lpc, #80]  ; b8 <mains@xbe-

6a: eeb3 Daeb vevt . £32.532 s0, s13|

6e: ee@6 5a90 vmov s13, r5

72:  eeh8 7ae6 vevt . £32.532 514, s13

76:  ee30 0Dad7 vsub. £32 50, 50, sl4

Fa:  eeBO 0a27 vdiv.f32 5@, s0, s15

Je:  eeb7 Dach vevt.f64.732  d0, s @ <-——B

82:  f7ff fffe bl @ < ZNS09_M_insertIdEERSOT >

86: fIff fffe bl 0 = ZStdendlIcStllchar traitsIcEERSt13basic
8a: 4620 mov. re, r4

8c: boo2 add sp, #8

8e bd7e pop {r4, rs, r6, pct

90: f240 0000 moww ro, #

94: f240 0100 movw. rl, #8

98: f2ce 0le0 movt rl, #0

9c:- f2c0 0000 movt ra, #0

ad: fIff fffe bl ® = Z5t1sIStllchar_traitsIcEERSt13basic ost
ad: 4621 mov. rl, r4

a6:  f7ff fffe bl 0 <_ZNSolsEi>

aa: fIff fffe bl © = ZStdendlIcStllchar traitsIcEERSt13basic
ae: fo4f 30ff mov.w. r@, #4294967295

b2:. fiff fffe bl 8 <exit>

be foo

b nop
b8: 49742400 ldmdbmi rat, {sl, sp}*

(b) Optimization flag O3

Figure 13: Comparison between the assembly code using optimization flags (a) O0 and (b) O3 for the gcc compiler.

a94:  ebfffffe bl 0 <pthread_create>
a98:  e5ebenlc str e, [fp, #-28]

agc: e51be0lc ldr ro, [fp, #-28]

aa@: 3500000 cmp re, #0

aa4: 0a08000a beq ad4 <main+Bxec>

aa8:  e59f00ed ldr re, [pc, #228] ; b94 <main+Bxlac>
aac:  e50f10ed ldr r1, [pc, #228] ; bO8 <main+Bx1bf>
abe: ebfffffe bl 0 < 75t1sIStllchar traitsIcEERSt13basic
abd:  e51b101c 1dr r1, [fp, #-28]

abs:  ebfffffe bl 0 < ZNSolsEi>

abc: e59flocc ldr 1,7 [pc, #204] ; b0 <main+0xlad>
acd:  ebfffffe bl 0 < ZNSOlSEPFRS0S E>

ac4:  e59f10co ldr r1, [pc, #1921 ; b8c <main+Bxlad>
acg:  e58d0008 str re, [sp, #8]

acc: e1a00001 mov re, rl

add:  ebfffffe bl 0 <exit>

ad4:  eaffffff b ad8 <main+oxfo>

adg:  e51bA020 ldr e, [fp, #-32]

adc: 2880001 add o, ro, #1

aed:  e50b8020 str re, [fp, #-321

aed:  eaffifce b 224 <main+0x3c>

ae8:  ebfffffe bl 0 <clock>

aec: 591074 1dr r1, [pc, #116] ; b68 <main+Bx180>
afe: es9f2074 ldr r2, [pc, #116] ; b6c <main+0x184>
afd: . e59f3074 dr r3, [pc, #116] ; b7@ <main+0x188>
afg:  eddofoald vldr sB, [pc, #116] ; b74 <main+Bx1Bcs
afc:  e50b8A14 str re, [fp, #-20]

b8e: - e51b0o14 ldr re, [fp, #-20]

bo4: eedlfald vmowv s2, o

bes: eeb8lacl vevt. 32,532 s2, s2

bc:  e51b8018 ldr re, [fp, #-16]

ble:  eed20al1® vmow. 54, O

bl4: eeb82ac2 vevt.£32.532 sd4, s4

bl8:  eedllad2 vsub. 32 sz, s2, s4

blc:  edsdlang vstr s2, [sp, #36] ; ©0x24

b26:  edddland vidr  s2, [sp, #36] ; Ox24

b24:  ee8lfand vdiv.f32 S0, 52, 50 e A\
b28:  edsdeans vstr s0, [sp, #321

(a) Optimization flag 00.

dgc: ebfffffe bl 0 <pthread creates
d9e ela5088 mov rs, ré

d94; 3550000 np rs, #0

doe: 1200002b bne e4c <main+ox170>

d9c: ebfffffe bl 0 <clock>

dad: 596130 ldr r6, [pc, #304] ; ed8 <main+Bxlfc>
da4:  e59fllic ldr rl, [pc, #316] ; ee8 <main+0x20c>
dag:  ela05000 mov. rs, ro

dac: e1ado0e6 mov ro, ré|

dbe: 3202006 mov r2, #6

dba:  ebfffffe bl 0 < _7St16__ostream_insertIcStllchar_
dba: ee0ddalo vmowv s0, rd

dbc: ee@l5al@ vmov. s2, r5

dco: 21a00086 mov ra, ré

dcd:  eebsoac® vevt.£32.532 50, s0

dca: eebslacl wevt. 32,532 s2, s2

dcc: ee310a48 vsub. 32 sB, s2, s

dde:  ed9flass vldr 52, [pc, #276]  ; eec <main+0x210>
ddd:  ee@ppadl vdiv. 32 sB, s0, 52

ddg:  eeb70ac wevt.f64.f32  do, 5O <——f

ddc: ebfffffe bl 0 < ZNS09 M_insertTdEERSGT >

ded:  ela04000 mov. rd, ro

ded: 5340000 ldr rg, [rd]

de8:  e248008c sub ra, ro, #12

dec: 25900000 ldr ro, [re]

dfe:  e0800004 add ro, ro, rd4

dfd:  e538507c ldr r5, [r0, #124] ; Ox7c

dfs: 3550000 np rs, #0

dfc: 0aeeon22 beq e8¢ <main+dx1bo>

efd:  e5d5e0lc 1drb ro, [r5, #28]

e84: 35600000 np re, #0

e08: 02000001 beq el4 <main+@x138>

edc: e5d51027 1drb rl, [rs, #39]1 ; ex27

eld: ead0o087 b e34 <main+0x158>

el4: 21a880e5 mov ra, r5

elg:  ebfffffe bl 0 < ZNKSt5ctypeIcE13_M_widen_initEw:
elc: 5950000 dr ro, [r5]

e20: e3adlofa mov rl, #10

e24: 5962018 ldr r2, [re, #24]

(b) Optimization flag O3

Figure 14: Comparison between the assembly code using optimization flags (a) 00 and (b) O3 for the clang compiler.

5.2 Recovering Secret Information

The section discusses the experiments and results performed to
retrieve secret information from a Raspberry Pi while executing
the AES-128 cryptographic program. Furthermore, the programs
was compiled with gcc, g++, and clang while utilizing the various
optimization parameters.

The experiments consisted of capturing the EM emissions from
the Raspberry Pi while the cryptographic executable ran. The pro-
grams were repeated 30 occasions, hence 30 EM traces were cap-
tured. The same procedure mentioned in Section 5.1 was utilized
to collect and process the data.

Once the data was collected the preprocessing procedure in
Figure 1 was applied. The preprocessing procedure as mentioned

in Section 4.4 applies various techniques such as elastic alignment,
denoising, and resyncing techniques to align the data.

The in depth process to align the data can be seen in Figure 9.
Furthermore, Figure 15a illustrates the EM traces before the align-
ment process and Figure 15b after the alignment process has been
applied.

The resultant data is sent to the attack procedure as discussed in
Section 4.5. The data was used as input for the CPA attack. The first
experiment involved utilizing 10 traces as input. Table 3 depicts the
results achieved as 10 traces were used as input.

The table comprises of four columns and rows. The first column
represent the optimization flag used by the compiler, followed by
columns two — four, depicting the number of subkeys recovered
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(a) Missaligned EM traces. (b) EM traces after alignment process.

Figure 15: Comparison between the (a) the missaligned EM

traces and (b) the EM traces after the alignment process has
been applied.

from the EM data. It is known that there are a total of 16 subkeys
for the AES-128 cryptographic algorithm.

Table 3: The subkeys recovered utilizing 10 traces.

O.Flags | g++ | gee | clang
0 5

[\CRNSRNE N
D W N3

1 3
2 1
3 5

Table 3 reveals an interesting pattern, as more optimization were
used the key recovery decreased as seven subkeys was recovered
while no optimization were used and two subkeys was recovered
as level three optimization were used for the gec/g++ compilers.
Furthermore, the clang compiler led to decrease of the number of
subkeys recovered as more optimizations were used. However, 03
optimization demonstrated that the same number of subkeys was
retrieved as no optimizations was used. This relates back to Table
2 where level three optimization increases the execution time of a
program and further evident in Figure 12d where more data points
are produced in the EM signature. In addition, it is shown that the
clang compiler with level two optimization reveal the least secret
information.

Table 4 and 5 depicts the results of the CPA attack as additional
EM data was added to input data for the attack.

Table 4: The subkeys recovered utilizing 20 traces.

O. Flags ‘ g++ ‘ gee ‘ clang

0 9 10 6
1 7 9 5
2 6 5 2
3 4 5 7

Table 5: The subkeys recovered utilizing 30 traces.

O.Flags | g++ | gee | clang

0 12 12 9
1 10 11 7
2 8 8 5
3 7 7 9
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The results in both tables reveals a reoccurring theme. The more
input data used for the CPA attack, the greater the number of
subkeys recovered. Furthermore, as the optimization levels increase
less subkeys are recovered as apposed to using no optimizations
flags. Additionally, the clang compiler reveals the fewest subkeys.

The subkeys that were recovered in the previous experiments
were further analyzed. Table 6 and 7 depicts the recovered sub-
keys for the GNU and clang compiler under the different compiler
optimizations.

Table 6: The subkeys recovered from the G++ compiler over
the various optimizations while utilizing 30 EM traces.

‘ Subkey
Flag |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 Y Y Y Y YYYYY - - - - Y Y Y
1 Y Y Y Y Yy - Y - Y Y - - Y Y Y
2 Y y - - - - Y Y - - Y - Y Y Y
3 Y Y Y Y - - Y Y , - Y Y -

Table 7: The subkeys recovered from the clang compiler over
the various optimizations utilizing 30 traces.

‘ Subkey
Flag |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 Yy yyy-Yy - - Y - - - - Y Y
1 Y - Y - Y Y - - Y Y Y
2 Y - - Y Y - - - - - Y Y Y
3 - Y YyYyy - Yy - - - - - Y Y Y

Table 6 depicts that utilizing no optimizations for the GNU com-
piler subkeys 1 - 9, and 14 — 17 were recovered. Although, fewer
subkeys were recovered while utilizing optimizations O1 and O2,
subkeys 10-12 were retrieved. A similar observation is made for
the results of the clang compiler as seen in Table 7. Fewer subkeys
are recovered. However, different subkeys in the secret key were
being retrieved.

This section has demonstrated the ability to recover partial AES-
128 cryptographic keys from a Raspberry Pi. In addition, the crypto-
graphic program was compiled with various C/C++ compilers and
optimization levels. The CPA attack revealed that the GNU compil-
ers achieved a similar result with respect to the number of subkeys
recovered. However, it was demonstrated that the subkey location
changed as different optimizations were used. Summing up, the
recovered subkeys, the researchers were able to retrieve 15 of the 16
AES-128 subkeys, with only subkey 13 not being recoverable. Fur-
thermore, the fewest number of subkeys was recovered as the clang
compiler was used with O2 optimization. Although, utilizing higher
levels of optimization, the results revealed that O3 optimization for
clang had the same effect as using no optimizations.

6 CONCLUSION

This research has successfully answered and provided an in depth
analysis to the questions posed in Section 1. The first two questions
being “Do different C/C++ compilers emit different EM emissions?"
and “What is the effects on the EM signature of an executable
binary as optimizations are enabled?". The research demonstrated
that GNU and clang compilers produced different EM signature
as a cryptographic program executed by demonstrating that the
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various optimization flags changes the EM signature of the program.
The assembler code was analyzed and the g++ implementation
displayed that fewer instructions were required which related to
less EM leakage. In addition, the clang machine code depicted that
different instruction sets were used and related to more EM data
being radiated.

The next set of question posed were “Can sensitive information
be recovered from these EM emissions?" and “Would the various
compilers optimizations assist in obfuscating information or en-
hancing the recovery of information?". Therefore, the EM data
from the various compilers under different optimization levels was
used as input in a CPA attack and partial AES-128 encryption keys
was recovered. The CPA attack revealed that the GNU compilers
achieved a similar result with respect to the number of subkeys
recovered. However, the location of the subkey recovered had var-
ied. Summing up, the recovered subkeys, the research was able
to retrieve 15 of the 16 AES-128 subkeys. Additionally, the fewest
subkeys was recovered while utilizing the clang compiler with 02
optimization. Although, utilizing more optimization, the results
revealed that level O3 optimization for clang had the same effect as
utilizing no optimizations.

This research clearly demonstrates that the various compiler
optimizations affects the EM signature of the binary executable.
This is important as this information can be utilized by developers
and system engineers to defend against known and future SCA
attacks by optimizing compiler parameters in a configuration that
can emit EM emissions to obfuscate adversaries. In addition, this
research has recovered three additional keys, with a total of 15
subkeys as apposed to the work in [10] were only 12 subkeys were
recovered.

FUTURE WORK

Although, various optimization levels are enable by the 00 — O3
flags. There is still room to investigate the effect of individual
optimization flags such as -fPIE, -D_FORTIFY_SOURCE=2, -fstack-
protector, and more which may provide protection to the binary,
which is largely linked to memory protection
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