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Abstract
Hierarchical reinforcement learning methods of-
fer a powerful means of planning flexible behav-
ior in complicated domains. However, learning
an appropriate hierarchical decomposition of a
domain into subtasks remains a substantial chal-
lenge. We present a novel algorithm for subtask
discovery, based on the recently introduced mul-
titask linearly-solvable Markov decision process
(MLMDP) framework. The MLMDP can perform
never-before-seen tasks by representing them as a
linear combination of a previously learned basis
set of tasks. In this setting, the subtask discovery
problem can naturally be posed as finding an opti-
mal low-rank approximation of the set of tasks the
agent will face in a domain. We use non-negative
matrix factorization to discover this minimal basis
set of tasks, and show that the technique learns
intuitive decompositions in a variety of domains.
Our method has several qualitatively desirable fea-
tures: it is not limited to learning subtasks with
single goal states, instead learning distributed pat-
terns of preferred states; it learns qualitatively
different hierarchical decompositions in the same
domain depending on the ensemble of tasks the
agent will face; and it may be straightforwardly
iterated to obtain deeper hierarchical decomposi-
tions.

1. Introduction
Hierarchical reinforcement learning methods hold the
promise of faster learning in complex state spaces and better
transfer across tasks, by exploiting planning at multiple lev-
els of detail (Barto & Madadevan, 2003). A taxi driver, for
instance, ultimately must execute a policy in the space of
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torques and forces applied to the steering wheel and pedals,
but planning directly at this low level is beset by the curse
of dimensionality. Algorithms like HAMS, MAXQ, and the
options framework permit powerful forms of hierarchical
abstraction, such that the taxi driver can plan at a higher
level, perhaps choosing which passengers to pick up or a
sequence of locations to navigate to (Sutton et al., 1999;
Dietterich, 2000; Parr & Russell, 1998). While these al-
gorithms can overcome the curse of dimensionality, they
require the designer to specify the set of higher level ac-
tions or subtasks available to the agent. Choosing the right
subtask structure can speed up learning and improve trans-
fer across tasks, but choosing the wrong structure can slow
learning (Solway et al., 2014; Brunskill & Li, 2014). The
choice of hierarchical subtasks is thus critical, and a vari-
ety of work has sought algorithms that can automatically
discover appropriate subtasks.

One line of work has derived subtasks from properties of
the agent’s state space, attempting to identify states that the
agent passes through frequently (Stolle & Precup, 2002).
Subtasks are then created to reach these bottleneck states
(van Dijk & Polani, 2011; Solway et al., 2014; Diuk et al.,
2013). In a domain of rooms, this style of analysis would
typically identify doorways as the critical access points that
individual skills should aim to reach (Şimşek & Barto, 2009).
This technique can rely only on passive exploration of the
agent, yielding subtasks that do not depend on the set of
tasks to be performed, or it can be applied to an agent as it
learns about a particular ensemble of tasks, thereby suiting
the learned options to a particular task set.

Another line of work converts the target MDP into a state
transition graph. Graph clustering techniques can then iden-
tify connected regions, and subtasks can be placed at the
borders between connected regions (Mannor et al., 2004). In
a rooms domain, these connected regions might correspond
to rooms, with their borders again picking out doorways.
Alternately, subtask states can be identified by their be-
tweenness, counting the number of shortest paths that pass
through each specific node (Şimşek & Barto, 2009; Solway
et al., 2014). Finally, other methods have grounded subtask
discovery in the information each state reveals about the
eventual goal (van Dijk & Polani, 2011). Most of these
approaches aim to learn options with a single or low number
of termination states, can require high computational ex-
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pense (Solway et al., 2014), and have not been widely used
to generate multiple levels of hierarchy (but see (Vigorito &
Barto, 2010)).

Here we describe a novel subtask discovery algorithm
based on the recently introduced Multitask linearly-solvable
Markov decision process (MLMDP) framework (Saxe et al.,
2016), which learns a basis set of tasks that may be linearly
combined to solve tasks that lie in the span of the basis
(Todorov, 2009a). We show that an appropriate basis can
naturally be found through non-negative matrix factorization
(Lee & Seung, 1999; 2000), yielding intuitive decomposi-
tions in a variety of domains. Moreover, we show how the
technique may be iterated to learn deeper hierarchies of
subtasks.

2. Background: The Multitask LMDP
In the multitask framework of (Saxe et al., 2016), the agent
faces a set of tasks where each task has an identical tran-
sition structure, but different terminal rewards, modeling
the setting where an agent pursues different goals in the
same fixed environment. Each task is modeled as a finite-
exit LMDP (Todorov, 2009a). The LMDP is an alternative
formulation of the standard MDP that carefully structures
the problem formulation such that the Bellman optimality
equation becomes linear in the exponentiated cost-to-go. As
a result of this linearity, optimal policies compose naturally:
solutions for rewards corresponding to linear combinations
of two optimal policies are simply the linear combination
of their respective desirability functions (Todorov, 2009b).
This special property of LMDPs is exploited by (Saxe et al.,
2016) to develop a multitask reinforcement learning method
that uses a library of basis tasks, defined by their boundary
rewards, to perform a potentially infinite variety of other
tasks–any tasks that lie in the subspace spanned by the basis
can be performed optimally.

Briefly, the LMDP (Todorov, 2009a;b) is defined by a three-
tupleL = 〈S, P,R〉, where S is a set of states, P is a passive
transition probability distribution P : S × S → [0, 1], and
R is an expected instantaneous reward function R : S → R.
The ‘action’ chosen by the agent is a full transition prob-
ability distribution over next states, a(·|s). A control cost
is associated with this choice such that a preference for
energy-efficient actions is inherently specified. Finally, the
LMDP has rewards ri(s) for each interior state, and rb(s)
for each boundary state in the finite exit formulation. The
LMDP can be solved by finding the desirability function
z(s) = eV (s)/λ which is the exponentiated cost-to-go func-
tion for a specific state s. Here λ is a parameter related
to the stochasticity of the solution. Given z(s), the opti-
mal control can be computed in closed form (see (Todorov,
2006) for details). Despite the restrictions inherent in the
formulation, the LMDP is generally applicable; see the sup-

plementary material in (Saxe et al., 2016) for examples of
how the LMDP can be applied to non-navigational and con-
ceptual tasks. A primary difficulty in translating standard
MDPs into LMDPs is the construction of the action-free pas-
sive dynamics P ; however, in many cases, this can simply
be taken as the resulting Markov chain under a uniformly
random policy.

The Multitask LMDP (Saxe et al., 2016) operates by learn-
ing a set of Nt tasks, defined by LMDPs Lt = 〈S, P, qi, qtb〉,
t = 1, · · · , Nt with identical state space, passive dynamics,
and internal rewards, but different instantaneous exponen-
tiated boundary reward structures qtb = exp(rTb /λ), t =
1, · · · , Nt. The set of LMDPs represent an ensemble of
tasks with different ultimate goals. We can define the task
basis matrix Q =

[
q1b q

2
b · · · q

Nt

b

]
consisting of the differ-

ent exponentiated boundary rewards. Solving these LMDPs
gives a set of desirability functions zti , t = 1, · · · , Nt for
each task, which can be formed into a desirability basis ma-
trix Z =

[
z1i z

2
i · · · z

Nt
i

]
for the multitask module. With

this machinery in place, if a new task with boundary reward
q can be approximately expressed as a linear combination of
previously learned tasks, q ≈ Qw. Then the same weighting
can be applied to derive the corresponding optimal desir-
ability function, z = Zw, due to the compositionality of the
LMDP.

2.1. Stacking the MLMDP

The multitask module can be stacked to form deep hierar-
chies (Saxe et al., 2016) by iteratively constructing higher
order MLMDPs in which higher levels select the instanta-
neous reward structure that defines the current task for lower
levels in a feudal-like architecture. This recursive procedure
is carried out by firstly augmenting the layer l state space
S̃l = Sl ∪ Slt with a set of Nt terminal boundary states
Slt called subtask states. Transitioning into a subtask state
corresponds to a decision by the layer l MLMDP to access
the next level of the hierarchy. These subtask transitions are
governed by a new N l

t -by-N l
i passive dynamics matrix P lt .

In the augmented MLMDP, the full passive dynamics are
taken to be P̃ l = [P li ;P

l
b ;P

l
t ], corresponding to transitions

to interior states, boundary states, and subtask states respec-
tively. Higher layer transitions dynamics [P l+1

i ;P l+1
b ] are

then suitably defined (Saxe et al., 2016). Crucially, in order
to stack these modules, both the subtask states themselves
Slt, and the passive dynamic matrix P lt must be defined.
These are typically hand crafted at each level.

3. Subtask discovery via non-negative matrix
factorization

Prior work has assumed that the task basis Q is given a
priori by the designer. Here we address the question of
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Figure 1. Intuitive decompositions in structured domains. b) c) d) Representations of the subtasks uncovered for decomposition factors
k = [4, 9, 16] in the nested-rooms domain respectively. Subtasks correspond to regions rather than single goal states, and typically find
‘rooms’ rather than ‘doorways’. f) g) h) Representations of the subtasks uncovered in the snake-rooms domain. In all cases the subtasks
uncovered are refactored for different values of k, and considered as a whole provide an approximate cover for the full action space.

how a suitable basis may be learned. A natural starting
point is to find a basis that retains as much information as
possible about the ensemble of tasks to be performed, anal-
ogously to how principal component analysis yields a basis
that maximally preserves information about an ensemble of
vectors. In particular, to perform new tasks well, the desir-
ability function for a new task must be representable as a
(positive) linear combination of the desirability basis matrix
Z. This naturally suggests decomposing Z using PCA (i.e.,
the SVD) to obtain a low-rank approximation that retains
as much variance as possible in Z. However, there is one
important caveat: the desirability function is the exponen-
tiated cost-to-go, such that Z = exp(V/λ). Therefore Z
must be non-negative, otherwise it does not correspond to a
well-defined cost-to-go function.

Our approach to subtask discovery is thus to uncover a
low-rank representation through non-negative matrix factor-
ization, to realize this positivity constraint (Lee & Seung,
1999; 2000). We seek a decomposition of Z into a data
matrix D ∈ R(m×k) and a weight matrix W ∈ R(k×n) as:

Z ≈ DW (1)

where dij , wij ≥ 0. The value of k in the decomposition
must be chosen by a designer to yield the desired degree of
abstraction, and is referred to as the decomposition factor.
Since Z may be strictly positive, the non-negative decom-
position is not unique for any k (Donoho & Stodden, 2004).
Formally then we seek a decomposition which minimizes

the cost function
dβ(Z||DW ), (2)

where d is the β-divergence, a subclass of the more familiar
Bregman Divergences (Hennequin et al., 2011). The
β-divergence collapses to the better known statistical
distances for β ∈ {0, 1, 2} corresponding to distances
{‘Itakura-Saito’, ‘Kullback-Leibler’, ‘Euclidean’} (Ci-
chocki et al., 2011).

Crucially, since Z depends on the set of tasks that the agent
will perform in the environment, the representation is de-
fined by the tasks taken against it, and is not simply a fac-
torization of the domain structure.

3.1. Conceptual demonstration

To demonstrate that the proposed scheme recovers an in-
tuitive decomposition, we consider the resulting low-rank
approximation to the action basis in two domains for a few
decomposition factors. All results presented in this section
correspond to solutions to Eqn.(2) for β = 1. In the same
way that the columns of Z correspond directly to the op-
timal actions for the subtasks defined in the task basis Q
(Todorov, 2006), so the columns of the low-rank approxi-
mation D may be considered the generalized actions of the
uncovered subtasks. In Fig. 1, the subtasks uncovered for
decomposition factors k = {4, 9, 16} are overlaid onto the
corresponding domain(s).

It is clear from Figs. (1.b,c,d) that the subtasks uncovered in
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Figure 2. Decomposition in the taxi domain for k = 5. a) The taxi domain with pick-up/drop-off locations labeled. b) A view of subtasks
t1, . . . t5 divided into five copies of the base domain defined by the passenger’s location. Subtasks correspond to all states in which the
passenger is at a given location (regardless of the taxi’s location), or in the taxi. c) A graphical representation of the subtask structure in
which edge thickness is proportional to Dti(s). Probability leakage into the pick-up/drop-off actions is clear.

our scheme correspond to ‘rooms’ rather than the perhaps
more familiar ‘door-ways’ uncovered by other schemes.
This is due to the fact that our scheme can, and typically
does, uncover more complex distribution patterns over states
rather than isolated goal states. There are a few notable
features of the decomposition. Since an approximate basis is
uncovered, there is no implicit preference or value ordering
to the subtasks - all that is important is that they provide a
good subspace for the task ensemble. An associated fact is
that the resulting decomposition is ‘refactored’ for higher-
rank decompositions; that is to say thatDk+1 6= [Dk, dk+1].

With some of the conceptual features of the scheme firmed
up, we consider its application to the standard TAXI domain
with one passenger and four pick-up/drop-off locations. The
5 × 5 TAXI domain considered is depicted in Fig.(2.a).
Here the agent operates in the product space of the base
domain (5× 5 = 25), and the possible passenger locations
(5 choose 1 = 5) for a complete state-space of 125 states.
We consider a decomposition with factor k = 5. Figs.(2.b,c)
are complementary depictions of the same subtask structure
uncovered by our scheme.

The columns of Fig.(2.b) are the subtasks visually divided
into the five copies of the base domain defined by the passen-
ger’s location (here location ∗ corresponds to the passenger
being in the taxi). Consideration of subtask t1 shows that
the generalized action corresponds to the region of all base
states with the passenger at location A. We also note the
probability leakage into (∗, t1) corresponding to the ‘pick-
up’ action. A similar analysis holds for the other subtasks.
Considered as a whole, the subtask basis represents policies
for getting the passenger to each of the pick-up/drop-off
locations, and for having the passenger in the taxi.

Concretely then, the task of picking up the agent at location
A, and transporting them to locationB would be realized by
firstly weighting subtask t4 (getting the passenger into the

taxi) and then subtask t2 (getting the passenger to location
B, regardless of taxi location). Worthy of special mention
is subtask t4 which corresponds to the passenger being in
the taxi. Here the generalized action focuses probability
mass at the center of the room, with a symmetric fall-off
(corresponding to the symmetric placement of the pick-
up/drop-off locations); again we note the probability leakage
into the drop-off actions. Fig.(2.c) depicts the same subtask
structure graphically. Red balls depict states, while blue
balls depict subtasks. The edge thickness is proportional to
Dti(s). The primary edge connections correspond to the
‘regions’ identified in Fig.(2.b); all base states in which the
passenger is at a given location. Here the probability leakage
is perhaps more apparent; observe how all subtask states in
which the passenger is at a location map to states in which
the passenger is in the taxi (corresponding to the pick-up
action), and similarly the subtask in which the passenger is
in the taxi maps to states in which the passenger is at each
location (corresponding to the drop-off action).

4. Hierarchical decompositions
The proposed scheme uncovers a set of subtasks by finding
a low rank approximation to the desirability matrix Z. This
procedure can simply be reapplied to find an approximate
basis for each subsequent layer of the hierarchy, by factoring
Zl+1. However, as noted in section 2.1, in order to define
Zl+1 in the first place, both the subtasks Slt, and the subtask
passive dynamics P lt must be specified.

The subtask states Slt may be directly associated with the
generalized actions defined by the columns of Dl. Where
the columns of Dl corresponds to the desirability functions
for a set of approximate basis tasks; these approximate basis
tasks are taken to be the subtask states. Furthermore, as
noted in section 2.1, in the original formulation, P lt is hand-
crafted by a designer for each layer (Saxe et al., 2016). Here
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we relax that requirement and simply define the subtask
transitions as

P lt = αlDl, (3)

where αl is a hand-crafted scaling parameter which con-
trols how frequently the agent will transition to the higher
layer(s).

[Pi1,	Pb1]	

[Pi2,	Pb2]	

[Pi3,	Pb3]	

Z1 D1 [St1,	Pt1]	

Z2 D2 [St2,	Pt2]	

… … …

Figure 3. A recursive procedure for constructing hierarchical sub-
tasks. By associating the subtask states Sl

t of the MLMDP with the
generalized actions corresponding to columns of Dl, the subtask
discovery mechanism may be recursed to uncover hierarchical
subtasks corresponding to ever greater levels of abstraction.

A powerful intuitive demonstration of the recursive potential
of the scheme is had by considering firstly the k = 16 de-
composition of the nested rooms domain, Fig.(1), followed
by the k = 4 decomposition of the higher layer desirability
matrix, computed by solving the higher layer MLMDP. The
decomposition at the first layer intuitively uncovers a sub-
task for each of the sixteen rooms in the domain, Fig.(4); the
decompositions of the second layer uncovers the abstracted
quadrants. As such planning at the highest layer will drive
the agent to the correct quadrant, whereas planning at the
lower layer will drive the agent to a specific room, and plan-
ning at the level of primitives will then navigate the agent
to the specific state.

Layer 1 decomposition Layer 2 decomposition

Figure 4. Hierarchical decomposition of the nested rooms domain.
Recursive application of the scheme yields intuitive results. The
first layer of abstraction uncovers ‘rooms’; the second layer uncov-
ers quadrants.

To show that the scheme uncovers sensible decompositions
when applied to deeper hierarchies, we consider a 1D ring of
256 states in Fig.(5). At each layer l, we perform the decom-
position with factor kl = 256

4(4−l) . The subtasks uncovered

in Dl are then overlayed onto the base domain. At lower
levels of abstraction (outer rings), subtasks exhibit strong
localized behaviour; whereas at higher levels of abstraction
(inner rings), the subtasks uncovered correspond to broad,
complex distributions over states, covering whole regions
of the state space.

A	single	layer	of	hierarchy

D1
1

D2
1

S11

S21
S31

Multiple	layers	of	hierarchy

D1

D2

D3

D4

Figure 5. Deep hierarchical decomposition of the 1D ring domain.
Each ring represents the full state space, onto which successively
higher layer decompositions have been overlayed. The outer most
ring corresponds to the first layer of abstraction; here subtasks are
strongly localized indicating generalized actions that would drive
the agent to specific fine-grained regions. Inner rings correspond
to subsequent layers of abstraction; here subtasks exhibit more
distributed behaviour indicating generalized actions that would
drive the agent to broader patches of the states space.

5. Determining the decomposition factor k

Further leveraging the unique construction in Eqn.(2) we
may formally determine the optimal decomposition factor
k by critiquing the incremental value of ever higher rank
approximations to the complete action basis. Let us denote
the dependence of dβ(·) on the decomposition factor simply
as f(k). Then we may naively define the optimal value
for k as the smallest value that demonstrates diminishing
incremental returns through classic elbow-joint behaviour

|f(k + 1)− f(k)|< |f(k)− f(k − 1)|. (4)

In practice, when the task ensemble is drawn uniformly
from the domain, the observed elbow-joint behaviour is an
encoding of the high-level domain structure.

The normalized approximation error for higher rank approx-
imations in the TAXI domain is considered in Fig.(6). Both
measures exhibit ‘elbow-joint’ behaviour at k = 5. This
result is intuitive; we would expect to see a subtask corre-
sponding to the pick-up action in the base MDP (this being
the state of having the passenger in the taxi), and a subtask
corresponding to the drop-off action in the base MDP (this
being the state of having the passenger at each location).
This critical value would be identified by Eqn.(4).
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Figure 6. Normalized approximation error for higher rank decom-
positions in the TAXI domain contains task and domain informa-
tion. Notice the ‘elbow-joint’ behaviour at k = 5: this indicates
diminishing incremental returns for higher rank approximations.
This is intuitive since five is the minimum number of DOF required
to capture the dynamics for each passenger-location configuration.

6. Equivalence of subtasks
The new paradigm allows for a natural notion of subtask
equivalence. Suppose some standard metric is defined on
the space of matrices in Rm×n as m(A,B) = ||A− B||22.
Then a formal pseudo-equivalence relation may be defined
on the set of subtasks, encoded as the scaled columns of the
data matrix D, as A ∼ B → m(A,B) < ε. The pseudo-
equivalence class follows as

{(Dj ,Wj) ∈ dβ(Z,DjWj) | (DiWi) ∼ (DjWj)}. (5)

This natural equivalence measure allows for the explicit
comparison of different sets of subtasks.

As noted above, our scheme uncovered ‘rooms’, where other
methods typically uncover ‘doorways’, see Fig.(1). There is
a natural duality between these abstractions. By consider-
ing the states whose representation in Eqn.(2), ws, changes
starkly on transitions we uncover those states which consti-
tute the boundary between similar ‘regions’. Explicitly we
consider the function g : S → R:

g(s) =
∑
i

pis||wi − ws||22, (6)

which is a weighted measure of how the representations of
neighbour states differ from the current state. States for
which g(s) takes a high value are those on the boundary be-
tween ‘regions’. A cursory analysis of Fig.(7) immediately
identifies doorways as being those boundary states.

7. Conclusion
We present a novel subtask discovery mechanism based on
the low rank approximation of the action basis afforded by
the LMDP framework. The new scheme reliably uncovers
intuitively pleasing decompositions in a variety of sample

Figure 7. A natural duality exists between our decomposition and
‘doorways’. Consideration of representation switching between
states uncovers ‘doorways’ as boundary states of our approximate
basis.

domains. The proposed scheme is fundamentally dependent
on the task ensemble, and may be straightforwardly iterated
to yield hierarchical abstractions. Moreover the unusual
construction allows us to analytically probe a number of
natural questions inaccessible to other methods; we consider
specifically a measure of the equivalence of different set of
subtasks, and a quantitative measure of the incremental
value of greater abstraction.
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