Considerations on modelling grid-integrated PV

Presentation at Workshop on THE GRID INTEGRATION OF RENEWABLE ENERGY: CHALLENGES AND FIELD EXPERIENCES WITH GRID COMPLIANCE ASSESSMENT

CSIR Energy Centre

8 August 2017

Dr Clinton Carter-Brown Tel/Cell: +27 83 630 0626 Email: ccarterbrown@csir.co.za

Acknowledgement Cigre WG26.24 and NRS097-2-3

our future through science

The CSIR at a glance

The CSIR's Executive Authority is the South • African Minister of Science and Technology

Pretoria

our future through science

World: In 2016, 124 GW of new wind and solar PV capacity installed globally

This is all very new: Roughly 80% of the globally existing solar PV capacity was installed during the last five years

World: Significant cost reductions materialised in the last 5-8 years

Actual tariffs: new wind/solar PV 40% cheaper than new coal in RSA

Results of Department of Energy's RE IPP Procurement Programme (REIPPPP) and Coal IPP Proc. Programme

Notes: Exchange rate of 14 USD/ZAR assumed Sources: http://www.energy.gov.za/files/renewable-energy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-Deployment-NERSA.pdf; http://www.energy.gov.za/files/renewable-energy-status-report/Market-Overview-and-Current-Levels-of-Renewable-Energy-Deployment-NERSA.pdf; http://www.saippa.org.za/Portals/24/Documents/2016/Coal%20IPP%20factsheet.pdf; http://www.ee.co.za/wp-

content/uploads/2016/10/New_Power_Generators_RSA-CSIR-14Oct2016.pdf; StatsSA on CPI; CSIR analysis

5

What is different today as compared to just a few years ago?

Renewables are now cost competitive to alternative new-build options in large parts of Africa

- Renewables became cost competitive to conventionals during the last decade (PV: last 2-3 years)
- Subsidy-driven market creation in first-mover renewables regions (US, Europe, Japan) led to technology improvements and mass manufacturing

In matured markets, renewables are a substitution in a volume-wise stagnating energy system

- Renewables compete with an existing, steady-state energy system I fuel savers for the existing fleet
- Major incumbents with business models based on "large, central" suffer in terms of market share

In emerging markets, this is different: renewables can be at the core of the energy-system expansion

- Renewables compete with alternative new-built options / future scenarios for the energy structure
- More than just fuel savers, they change the entire paradigm on which energy systems were traditionally planned, designed, built and operated (large, central)

Modelling Transmission vs Distribution

Transmission

- Balanced network and load
- High X/R ratio
- Voltage control via reactive power control
- High levels of network visibility and control
- Geographic diversity
- Focus on dynamic stability
- Control of dispatchable Gx

Distribution

- Unbalanced network
- Unbalanced loads
- Low X/R ratio
- Voltage control via tap changing
- Passive network low levels of network visibility and control
- Stochastic variation in load
- Stochastic variation in generation (PV)
- Focus on adequacy

Illustration of voltage rise constraints on Distribution networks with embedded generation

our future through science

Technical impacts using a simple RSA grid

Low load

Voltage profiles with no generation

Voltage profiles with generation

Network can absorb significantly less power than it can supply

Example Smart Grid solutions

Using OLTC HV/MV transformer to reduce maximum voltages

Using OLTC MV/LV transformer to reduce maximum voltages

Using line Voltage Regulator to reduce maximum voltages

Using Reactive Power to reduce maximum LV voltages

NRS 097-2-3

LV connected generation: Simplified connection technical evaluation criteria

21

- NRS 097-2-1 specifies the minimum technical requirements for LV generators connected to the South African grid
- All LV grid connected generator interconnection equipment must be type-test certified, as complying with the minimum technical requirements of NRS 097-2-1
- These set of rules will be used to evaluate LV generator grid interconnection applications
- LV (230/400V) connected generators falling within these criteria are proposed to follow a simplified connection process that will not require detailed network studies

Rules to evaluate LV generator grid interconnection applications

- Gen sizes > 350 kVA will be connected to MV or HV networks
- The maximum permissible generation size of an individual customer is dependent on:
 - The type of LV network: Depends on whether the LV network supplying the customer is shared (supplies other customers) or dedicated (only supplies the customer in question), and
 - The customers Notified Maximum Demand (NMD): The NMD in many cases is determined by the LV service connection circuit breaker rating.

Shared LV feeders

- The maximum individual generation limit in a shared LV feeder is 25% of the customer's NMD, up to a maximum of 20kVA (generators >20kVA must be connected via a dedicated LV feeder)
- Any generator >4.6kVA must be balanced across 3 ph.

Number of phases	Service circuit breaker size	NMD (kVA)	Maximum individual generation limit	MV/LV transformer
1	20A	4.6	1.2kVA	↓−− −−−−
1	60A	13.8	3.68kVA	
3	60A	41.4	13.8kVA (4.6 kVA per phase)	our future through science

Example of shared LV feeder

- A LV customer with a 100kVA NMD supplied via a shared LV feeder could connect up to 100 x 25% = 25kVA of generation. As 25kVA is greater than the 20kVA limit for a shared feeder, the maximum size is 20kVA; which is > than 4.6kVA 1-ph limit; it would need to be 3-ph connected.
 - If the maximum individual generation limit is exceeded, the customer could potentially be connected via a dedicated LV feeder, paid for by the customer such that the generator is supplied via a dedicated LV feeder (and the dedicated LV feeder limits apply).
 - The total generation supplied by shared LV feeders is limited to 25% of the MV/LV transformer rating.
- A 200kVA MV/LV transformer can supply up to 50kVA of generation supplied via shared LV feeders connected to that transformer.

Dedicated LV feeders

The maximum individual generation limit is a function of:

- The Notified Maximum Demand: The maximum generator size is limited to 75% of the NMD
- Single phase supplies max gen 13.8kVA
- Multi-phase supplies all generators > 4.6kVA must be balanced
- Connections that only supply generators will be made via a dedicated LV feeder
- The dedicated feeder cable size (voltage rise is limited to 1%)

Additional rules

- The following rules apply in addition to the rules for shared and dedicated LV feeder connected generators:
 - The total generation (i.e. shared LV generation + dedicated LV generation) supplied by a MV/LV transformer shall be less than 75% of the MV/LV transformer rating, and
 - The total generation supplied by a MV feeder shall be less than 15% of the MV feeder peak load.
- If both criteria are not met, then additional generation does not meet the simplified connection criteria; hence cannot be connected to the network without further studies

Summary of the connection criteria

Flow chart

Thank you

Re a leboga

Ro livhuha

Siyabonga

Dankie

30 Note: "Thank you" in all official languages of the Republic of South Africa