Review Article

Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review

Jianwei Ren a,*, Nicholas M. Musyoka a, Henrietta W. Langmi a, Mkhulu Mathe a, Shijun Liaob

a HySA Infrastructure Centre of Competence, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa
b School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road, Tianhe District, Guangzhou 510640, China

A R T I C L E I N F O

Article history:
Received 24 June 2016
Received in revised form 29 November 2016
Accepted 30 November 2016
Available online xxx

Keywords:
Materials-based hydrogen storage
Reaction enthalpies
Nanoconfinement
Ionic liquids
Conversion of ortho-para hydrogen

A B S T R A C T

Effective hydrogen storage solutions have been pursued for decades, and materials-based hydrogen storage is a research frontier of much current interest. Yet, no researched materials to date have come close to the DOE 2020 targets for hydrogen storage at ambient conditions, although some good results have been reported at cryogenic temperature. This paper critically reviews the current research trends and perspectives on materials-based hydrogen storage including both materials-based physical storage and materials-based chemical storage. In the case of physical storage, the efforts on exploring new porous materials with extra larger surface/pore volume, inducing hydrogen spillover effect, and tailoring reaction enthalpies are discussed. Meanwhile, for chemical storage, approaches to improve the kinetics and/or thermodynamics such as the development of composite hydride systems, nanoconfinement of hydride materials as well as the usage of ionic liquids as hydrogen storage materials or useful additives are discussed. Furthermore, the applied techniques on solid-state materials towards system integration such as shaping and electrospinning processes are introduced. Finally, the concept of storing hydrogen in para form for long-term hydrogen storage is discussed, and a converter packed with catalysts to process the normal hydrogen to para-hydrogen is highlighted.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Contents

Hydrogen as a fuel for the future.. 00
Materials-based hydrogen storage systems ... 00
Research trends on porous materials-based physical sorption ... 00

* Corresponding author. Fax: +27 128412135.
E-mail address: jren@csir.co.za (J. Ren).
http://dx.doi.org/10.1016/j.ijhydene.2016.11.195
0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Hydrogen as a fuel for the future

Today’s world and particularly developing countries, rely heavily on fossil fuels. Most of the time, the fossil fuels are consumed for heat and electricity. The growing world population and increasing standard of life-style have led to a rapidly increasing demand of energy since 1950 and are projected to peak in 2035 [Fig. 1] [1]. Moreover, the non-renewable nature of fossil fuels such as coal, oil and natural gas at the humankind timescale has prompted governments in many countries to think about energy security. Fossil fuels will one day be inevitably used up, although this may not occur in the next two generations due to the relatively large reserves of natural gas and coal still available. However, with the current consumption rate the proven reserves of natural gas and coal should last for approximately 70 and 200 years, respectively, and oil is expected to deplete even earlier [2]. By that time, an alternative fuel is needed for the future energy demand when those fossil fuels become unavailable, more importantly for the transport sector, which is consuming almost 60% of the world energy [3]. Among potential candidates such as solar, wind, nuclear, tidal, hydro, biofuels and geothermal energy, hydrogen appears to be the best choice due to the highest energy density per unit mass (120 MJ/kg), no environmental implications and its abundance in the universe [4–6].

The proposed ‘Hydrogen Economy’ is driven by electricity, and hydrogen presents a means to store electricity via chemical bonds of hydrogen. Typically, 6 kg of hydrogen is able to allow a light-duty vehicle to run for 500 km [7]. Ideally, the amount of hydrogen should be carried as a small volume and light weight. For practicality, the 2020 targets set by the US DOE are: gravimetric capacity of 5.5 wt.% and volumetric capacity of 40 g L⁻¹ at an operating temperature of –40 to 60 °C under a maximum delivery pressure of 12 bar [8]. These values were described for a complete system including tank, materials, valves, regulators, piping, mounting brackets, insulation, added cooling capacity and other balance-of-plant components [8]. To date, the extensive utilization of hydrogen as a fuel is being hindered by lack of effective hydrogen storage solutions. At standard temperature and pressure with a low density of 0.089 g L⁻¹, 6 kg of hydrogen gas will occupy a

\[
\frac{6 \text{ kg}}{0.089 \text{ g L}^{-1}} = 68,538 \text{ L}
\]

Fig. 1 – World primary energy consumption. Re-produced from Ref. [1] with permission.
spherical volume of 5 m in diameter. Based on the PVT-characteristic, the common practice is to pressurize hydrogen gas into a steel cylinder. So far, high-pressure tanks have been rated to a maximum of 700 bar.

Despite such high pressures, as shown in Fig. 2 [9], at 700 bar, 6 kg of hydrogen still requires a storage tank with a volume of about 150 L. As another option, liquid hydrogen systems offer a higher density of 71 g L⁻¹ H₂ at −253 °C. But the heat input from the surroundings into the tank leads to the evaporation of the hydrogen, the so called boil-off phenomenon [10]. The currently available engineering technologies have not yet been able to prevent the heat input from the environment and suppress those losses [11]. These losses involve the conversion of para-hydrogen to ortho-hydrogen, which will be introduced in a later section. Therefore, purely pressurized and liquid H₂ are not considered as economically viable options for hydrogen storage.

Materials-based hydrogen storage systems

Recently, materials-based hydrogen storage has been considered as a long-term solution [12]. Considering both PVT-filling and adsorption effect, improved volumetric hydrogen storage capacities in materials-packed gas cylinders compared to cylinders without any materials can be expected. Depending on the type of materials, the storage system is based on either physical sorption (physisorption) as in the case of porous materials or chemical sorption (chemisorption) as in the case of metal/chemical hydrides. Physisorption involves weaker binding energy of 4–10 kJ mol⁻¹ and weak van der Waals forces, while chemisorption involves stronger binding energy of 50–100 kJ mol⁻¹ in complex hydrides and metal hydrides, where the hydrogen molecule is first dissociated on the surface, followed by diffusion of the hydrogen atoms into the metal host lattice [13]. In comparison to chemisorption, physisorption processes are easy to handle, are reversible due to the low interaction energy, and possess fast adsorption–desorption kinetics [14]. In porous materials such as zeolites, porous carbon structures, and metal–organic frameworks (MOFs), hydrogen is physisorbed on the surface of the pores, and the capacity is mainly dependent on the surface area, pore volume, working pressure and working temperature. Typically, many of the physisorption based materials have acceptable hydrogen storage capacities at cryogenic temperatures (77 K) and high pressures, but their capacities drop to below 1 wt.% at ambient temperature and pressure in the range 50–100 bar [15]. Then the economic feasibility of storing hydrogen based on physisorption at cryogenic temperature becomes an issue that should also be addressed. Given the binding energy of hydrogen on the surface of a certain material is 10 kJ mol⁻¹ H₂, 6 kg H₂ will generate 30 MJ heat. If the 77 K temperature is maintained by liquid nitrogen with heat of vaporization of 5.6 kJ mol⁻¹, then 5400 mol N₂ (150 kg) liquid nitrogen should be circulated around cylinder. Such large amount of liquid nitrogen for cooling purposes would lead to difficulties for the engineering work at a later stage. Usually for chemisorption with stronger binding energy, formation of hydrogen compounds occurs under elevated hydrogen pressure generating heat as a result of the exothermic reaction. In order to release the hydrogen, the pressure is reduced and heat is applied to the material. Although some metal hydrides can operate reversibly near ambient temperature, their gravimetric hydrogen storage capacities are lower than 3 wt.% [16]. Some light metal hydrides and complex hydrides possess high gravimetric storage capacities (e.g. 7.6 wt.% for MgH₂ and 18 wt.% for LiBH₄). However, releasing of hydrogen from these hydrides requires high
temperatures. For instance, MgH₂ requires a temperature of about 573 K. Furthermore, the complex hydrides release hydrogen via multi-step reactions with different temperatures [17–20], which further complicates the heat management of the storage system. To enable hydrogen to be stored in a solid-state materials-based system at ambient temperature with acceptable storage density, different strategies have been investigated and evaluated. For porous materials-based physisorption systems, research is focused on improving hydrogen storage capacities at ambient temperature. For metal/chemical hydrides-based chemisorption systems, research is focused on improving kinetics and thermodynamics of the investigated materials as well as developing new materials and catalysts that will enable the achievement of high storage capacities at significantly lower temperatures.

Ionic liquids have been known since 1913, and their historical introduction together with recent progress has been reviewed by Wilkes [21] and Hajipour et al. [22], respectively. The established definition of ionic liquids is; salts in a liquid state with a melting point below 100 °C. Even though this performance did not specifically lead to a breakthrough, it is worth pursuing the research topic further in order to draw a meaningful conclusion on the appropriateness of this exciting class of materials for hydrogen storage applications [20]. The research trends on ionic liquids will be discussed in Section Research trends on ionic liquids for hydrogen storage applications.

Research trends on porous materials-based physical sorption

There is increasing potential to achieve reliable hydrogen storage capacities in porous materials-based systems [11, 14, 17, 31]. Of the existing porous materials, metal-organic frameworks (MOFs) and porous carbonaceous materials have been identified to be attractive for hydrogen storage [11, 14, 31–33]. Some studies [34, 35] have also highlighted the enhancement of hydrogen storage capacities, thermoo- and hydro-stability that can be achieved on porous hybrid composites of MOFs and carbon materials. Up to date, most research strategies are being focused on ways of achieving better performance of porous materials-based physical sorption at ambient temperature, and several comprehensive reviews have covered some of these studies in detail [36–41].

Exploration of new materials with higher Brunauer–Emmett–Teller (BET) surface areas and larger pore volumes

It is generally believed that higher BET surface areas and larger pore volumes will enhance hydrogen storage capacities [31, 32], Carbon aerogel [42] and MOF-210 [43] materials have BET surface areas of 3200 and 6240 m² g⁻¹, respectively. Nu-109 and NU-100 materials [44] exhibit the highest experimental BET surface areas of any porous materials (~7000 m² g⁻¹) reported to date. However, Suh et al. [45] indicated that the H₂ uptake capacities at 77 K and 1 bar only correlate with the BET surface areas below 2000 m² g⁻¹, and are no longer applicable when the BET surface area exceeds 2000 m² g⁻¹ (Fig. 3). The argument was that, at 77 K and 1 bar of H₂ pressure, H₂ molecules cannot completely cover the surface area larger than 2000 m² g⁻¹ because at low pressure, H₂ prefers to bind on the sites with large affinity for H₂. This conclusion was supported by the Grand Canonical Monte Carlo (GCMC) simulations [45], and the results showed the occurrence of three adsorption regimes as follows: in the low pressure region, H₂ uptake relates to the heat of H₂ adsorption, while at intermediate pressure (up to 30 bar) it correlates with the surface area, and at high pressures (120 bar) with the free volume (Fig. 4).

Given the fact that at ambient temperature the surface coverage of a material by H₂ molecules is much lower than that at 77 K, for a material with a BET surface area larger than 2000 m² g⁻¹, the enhancement of hydrogen storage capacities...
due to further increase in BET surface area above 2000 m²·g⁻¹ will be significantly limited. It is therefore not advisable to put too much effort in pursuit of new materials with extra large surface areas only since H₂ adsorption may be influenced by a range of other factors. For example, in the case of MOFs, H₂ adsorption is also influenced by pore size, open metal sites, ligand functionalization, and catenation [47,48].

Tailoring reaction enthalpies

Out of the ongoing development of new materials and concepts [49–53], enthalpy of adsorption has drawn extensive attention from the hydrogen storage research community. For a developed material for hydrogen storage purpose, if this value is too high as in the case of chemisorption materials, large amounts of heat will be released during the charging process, and extra energy will be needed to enable the release of hydrogen for applications. In contrast, for physisorption materials, the enthalpy of adsorption is too low and thus, low hydrogen storage capacities can be expected at ambient temperature and pressure. To achieve high storage capacities, cryogenic temperature is required to maintain high density of hydrogen molecules on the material. Porous materials like MOFs and carbons usually exhibit very large surface areas and high hydrogen storage capacities at cryogenic temperature. However, at ambient temperature the storage capacities of these materials are low because the adsorption enthalpy is low implying the materials cannot effectively bind hydrogen on the surface under this at such temperatures. For instance, over 60 carbon materials were studied under ambient conditions, and the reversible storage capacities ranged between 0.04 and 0.46 wt.% [54,55]. To date, none of the developed MOF materials meets the US DOE 2020 hydrogen storage capacity target of 5.5 wt.% at the system-level at moderate temperature and pressure. The key setback is the weak van der Waals forces between H₂ molecules and the pore surface of MOFs. Similarly to carbon materials, although some MOFs with large surface area and pore volume can reach values not far from the target at cryogenic temperatures, those values fall to below one-tenth of the cryogenic values at moderate temperature. As discussed in Section 3.1, the H₂ storage capacities of MOF materials at 77 K and high pressure can be associated with the free volume. Since the common practice is to store hydrogen in a steel bottle at a pressure of about 150 bar at 298 K, understanding the relationship between the heat of H₂ adsorption and hydrogen storage capacities under such condition is important. The reported data from literature were collected and plotted into Fig. 5 by Suh et al. [45].

As seen in Fig. 5, the H₂ heat of adsorption values for most of the MOFs are in the range of 4–12 kJ·mol⁻¹. As the value increases from 4 to 12 kJ·mol⁻¹, the high pressure H₂ storage capacities at 77 K were not improved to a large extent (Fig. 5a). Nevertheless, at 298 K and 10–90 bar, the H₂ storage capacities generally seemed to increase with increased heat of adsorption (Fig. 5b). Given a H₂ adsorption enthalpy of 6 kJ·mol⁻¹, as calculated by Bhatia et al. [56], the optimal operating temperature is 131 K between 1.5 and 100 bar. It is thus necessary to increase the binding ability of H₂ to MOF materials in order to avoid the use of costly and cumbersome cooling system. In this regard, several strategies have been explored, for instance, Kubas binding, ionization, polarization and irradiation of the host materials.

Usage of Kubas binding

As discussed in the previous section, the low heats of adsorption in the range of 4–10 kJ·mol⁻¹ based on H₂ physisorption are too weak to hold hydrogen molecules on to the surface of the material, leading to low hydrogen storage capacities. On the other hand, binding enthalpies of 40–100 kJ·mol⁻¹ based on H₂ chemisorption are too strong to allow hydrogen to be released easily, resulting in poor reversibility and slow kinetics. As such the energy storage capacity of the developed system in reality reduces considerably with the complicated heat management. Some reports have indicated that a binding enthalpy of 20–30 kJ·mol⁻¹ is ideally required to operate a hydrogen storage system at room temperature [57–59]. Such binding enthalpy values allow for a sufficiently strong interaction between hydrogen and the material as well as provide less problematic heat management [60]. In order to achieve the desired binding enthalpy exploration of Kubas interaction has been suggested [61–64]. Kubas interaction involves σ donation from the filled σ-bonding orbital of H₂ molecule to an unfilled d orbital of a transition metal, and at the same time π back-donation from a...
filled d orbital of a transition metal to the empty σ* anti-bonding orbital of the H2 molecule. In terms of binding strength (see Fig. 6), Kubas interaction is at the mid-point of physisorption and chemisorption, thus this concept can be potentially employed in hydrogen storage systems designed to operate at room temperature [65]. Several studies [66–70] have demonstrated that Kubas interaction can be exploited in designing novel hydrogen storage materials that eliminate the limitations arising from physisorption and chemisorption mechanisms.

Ionization of the host materials

Another alternative strategy for designing materials with improved performance of H2 storage follows on from the concept of Kubas interaction discussed above. Based on Kubas interaction, many transition metal complexes have been studied as potential hydrogen storage materials [52,71–79]. A new approach emerging from this concept has been proposed by several research groups. Stefanakos et al. [80] believed that ionization of the host materials and hydrogen molecules could lead to enhancement of hydrogen adsorption. In the latter case, they used modified fullerene (with Na+ and K+ as dopants), and demonstrated that the hydrogen adsorption capacity can be raised from 2.8 wt.% to 3.1 wt.%. Liu et al. [81] illustrated that charged Li3C2H4 and TiC2H4 complexes improve the metal bond strength as well as increase the number of non-dissociative H2 molecules attached. Guo et al. [82] employed C4H4 as substrate for Co and Ni atoms, and attributed the enhancement in hydrogen storage capacity from 3.48 to 5.13 wt.% for the CoC4H4 complex, to the ionic processes involved. Wang et al. [83] studied LiF coated C60, and the resulting gravimetric and volumetric H2 storage densities for C60(Li2F)12 were 10.86 wt.% and 59 g L−1, respectively, obtained through calculations. The binding energy of dihydrogen is within the expected range, which enables hydrogen sorption/desorption to occur at ambient conditions.

Polarization of the host materials

Yaghi et al. [84] proposed a structure polarization strategy for further improvement of hydrogen storage in MOFs. Using density functional theory, Yoon et al. [85] conducted a
systematic study on how charging of carbon fullerenes can affect their ability to bind hydrogen molecules. It was reported that the binding strength of molecular hydrogen on either positively or negatively charged fullerenes can be remarkably improved to the desirable range for possible application at room or near ambient temperature. The enhanced binding is associated with the polarization of the hydrogen molecules by the high electric field that is created near the surface of the charged fullerene, and is delocalized, surrounding the entire surface of a charged fullerene. Zhou et al. [86] directly applied an external electric field to hydrogen storage nanomaterials. Using density functional theory, they demonstrated that in an applied electric field polarization of the electrons of the hydrogen molecules occurs, and the electrostatic interactions between the hydrogen molecules and the substrates enhance the storage performance considerably. Even more significant is the fact that upon removal of the applied electric field, the system returns to its original state and hydrogen molecules simply desorb, resulting in good reversibility and fast kinetics. The study suggested that this approach of directly applying an external electric field would lead to a simpler synthesis of materials while enhancing the thermodynamics and reversibility of hydrogen storage. It was also noted that the storage of hydrogen in quasi-molecular form by exposed metal cations occurred via a polarization mechanism where the H₂ molecule is polarised by the electric field associated with point ions [86,87].

Irradiation of the host materials
The concept of irradiation was proposed by Muga et al. [88] to alter the reaction behaviour of host storage materials with hydrogen thereby improving their hydrogen storage capacity. Such alteration involves adjustment of the electronic configuration of the storage material. According to their report, penetrating radiation can excite and activate the electronic environment at surface as well as interior sites, making the sites ready for bonding with hydrogen in a quasi-manner. This mechanism is supported by other researchers [89]. Obolensky et al. [90] reported increased (~15%) hydrogen sorption/desorption capability for carbon nanotubes following irradiation by γ-rays. Novaković et al. [91] examined the effects of well-defined structural changes introduced within a thin surface layer of MgH₂ as a result of irradiation with Xe ions, and found that it is possible to control the thermodynamic parameters by controlled ion bombardment.

Inducing the H₂ spillover effect
For practical purposes, porous materials are expected to adsorb/release H₂ efficiently near room temperature. A concept of storing hydrogen in porous materials based on the ‘spillover’ mechanism has been proposed and evaluated. Generally, it involves loading of a metal catalyst such as Pd, Pt, Ni on the porous materials as hydrogen dissociation catalyst to create atomic hydrogen [Fig. 7] [92]. The dissociated H atoms migrate from metal particles to the support material with a lower activation energy (<10 k)·mol⁻¹), and the adsorbed hydrogen migration can occur reversibly from the support surface back to metal particle surface for desorption [93]. One of the most appealing features of such concept is the possibility to operate the hydrogen storage system at room temperature rather than cryogenic temperature (77 K) [93].

In order to make the system suitable for room temperature operation, many post-synthetic strategies for porous materials to induce hydrogen ‘spillover’ have been evaluated. So far, this technique has been experimentally demonstrated by over 600 publications from more than 70 research groups globally, as reviewed by several groups [93–97]. Some studies have reported enhancement of hydrogen storage capacity in MOFs by using metals (such as Pt, Pd, Ru and Ni) together with a support composed of high surface area material (such as activated carbon) to promote the hydrogen ‘spillover’ effect [98–107]. In addition, some theoretical studies have been conducted to explain hydrogen spillover in MOF materials [34,108–116]. However, despite these positive reports, there are some experimental studies that have discredited hydrogen storage by spillover effect, and reported the attained spillover enhancement factors to be smaller than 8, if not below the detection limit [117–120]. To date, the understanding of spillover for hydrogen storage is limited. As highlighted by Prins [86], spillover does not occur in all circumstances, and caution must be exercised before attributing a scientific occurrence to spillover. It is generally believed that the mechanism involved in carbon hydrogenation i.e. when hydrogen atoms are chemisorbed, it is the transition from sp³ to sp³ hybridization [121]. Also during our review of the literature, we noticed that in most of the cases, spillover was reported to occur in the presence of carbon materials. In other words, carbon materials and H atoms are able to bind exothermally, but in the case of MOFs, it is unclear how the binding between H atoms and for example, organic units in the MOFs, would take place. For instance, the spillover on MIL-101 was not evidenced even by careful and complex experiments [122]. The research regarding ‘spillover’ effect is still ongoing [123–128], although inaccurate measurements have created confusion in the research community, and no independent groups have succeeded in reproducing the enhanced storage. Tsao group [129] claimed that oxygen content and functional groups on the surface of support accounted for the room temperature enhanced hydrogen storage capacities. Razzhivina et al. [130] recently observed hydrogen spillover through a gas phase in a 5% Pd/C catalyst-sodium 4-phenylbenzoate system employing tritium as a tracer. From our view to date, plenty of time and funds were invested from research groups by trying to replicate results.

Research trends on metal/chemical hydrides-based chemical sorption
The term ‘metal hydride’ referred here encompasses conventional hydrides such as Mg₂NiH₄ and LaNi₅H₆, and complex hydrides such as borohydrides, alanates and amides. Among the metal hydrides, light-weight hydrides such as MgH₂ and LiBH₄ have received immense interest because of their high hydrogen storage densities, both gravimetrically and volumetrically. As known, in general, shortcomings of metal/chemical hydrides for hydrogen storage practices are sluggish kinetics of hydrogen desorption/absorption,
relatively high thermal stability, irreversible hydrogen storage and unwanted side gases. In the following subsections, we highlight several strategies towards enhancing the hydrogen storage characteristics of metal hydrides. Particular attention is given to those strategies geared towards lowering the operating temperature, enhancing the uptake/release kinetics and suppressing the formation of unwanted gases during desorption. These and several other approaches have also been reviewed elsewhere [11, 49, 50, 131–134].

Development of reactive hydride composites

Two or more reactive hydrides can be mixed together to form a reactive hydride composite. In such systems, the overall reaction enthalpy is lowered as a result of the formation of a new product through an exothermic reaction while releasing hydrogen through an endothermic reaction of the constituent hydrides. Consider the composite system composed of LiBH4 and MgH2, the theoretical hydrogen storage capacities of the individual hydrides are 18.5 and 7.6 wt.%, respectively and their enthalpies are −70 and −75 kJ·mol⁻¹ H₂, respectively. This implies the constituent hydrides must be heated to high temperatures to release hydrogen. MgH2 alone needs to be heated to 300 °C for desorption of hydrogen at 1 bar, while temperatures in excess of 400 °C are necessary for complete release of hydrogen from LiBH4, and even more extreme conditions are required for its rehydrogenation. On the other hand, the composite system can release 11.4 wt.% H₂ in a single step with a much lower reaction enthalpy of −45 kJ·mol⁻¹ H₂, forming MgB₂, and as such ensuring the thermodynamic feasibility of the reversible hydrogen uptake [135]. Recently, He et al. [136] synthesized borohydride hydrazinates (e.g. LiBH₄·NH₂NH₂ and LiBH₄·2NH₂NH₂) by coordinating NH₂NH₂ with LiBH₄ as new hydrogen storage materials. They found 13 wt.% H₂ can be released from LiBH₄·NH₂NH₂ at 140 °C in the presence of Fe–B catalysts. Luo et al. [137] synthesized a new complex of LiBH₄·NH₃BH₃ by mechanically milling NH₃BH₃ and LiBH₄ in equivalent molar ratio. The resulting mixture released 15.7 wt.% hydrogen upon heating to 450 °C. Shin et al. [138] demonstrated the

![Fig. 7 – Hydrogen spillover in a supported catalyst system: (a) adsorption of hydrogen on a supported metal particle; (b) the low-capacity receptor; (c) primary spillover of atomic hydrogen to the support; (d) secondary spillover to the receptor enhanced by a physical bridge; (e) primary and secondary spillover enhancement by improved contacts and bridges. Reproduced from Ref. [93] with permission. Copyright 2005 the American Chemical Society.](image-url)
incorporation of hydrolysable BH₄⁻ into the clathrate hydrate to form a hybrid hydrogen storage material tetra-n-butylammonium borohydride [(n-C₄H₉)₄NBH₄]. Other new perspectives of complex hydrides for hydrogen storage were reviewed by Ley et al. [139] about nanoporous hydride, anion substitution, and multi-functional metal borohydrides. In summary, reactive metal hydride composites could pave the way for new developments in the metal/chemical hydride research space, but it must be realised that although some of these materials are conceptually fascinating their applicability in real hydrogen storage systems are yet to be realised.

Nanoconfinement of hydride materials

Although some hydride materials (such as LiBH₄ and MgH₂) have high theoretical energy densities, their thermodynamics and kinetics are unfavourable for hydrogen storage practices under moderate pressure and temperature conditions. Finding a way to improve these properties is essential. Nanoconfinement is one of the important material processing techniques to enhance the thermodynamics and kinetics of those hydrides in hydrogen charging/discharging cycles. The strategy here is to achieve much higher reaction surfaces in a manner of decreasing the sizes of the hydride particles. Given a reaction of metal M with hydrogen to form a binary hydride MH₂ in Eq. (1), the molar free energy involved in the process can be obtained from Eq. (2) [140,141].

\[
M + H_2 \leftrightarrow MH_2 \quad (1)
\]

\[
\Delta G(r) = \Delta G_0(r) + RT \ln \left(\frac{\alpha \Delta H_{\text{f}}}{\Delta S_{\text{f}}} \right) + \frac{3V_M EM_{\text{f}} - \Delta H_{\text{f}}(r)}{r} \quad (2)
\]

where \(V_M\) is the molar volume, \(r\) is the particle radius, \(\alpha\) is the chemical activity, and \(\gamma\) is the surface free energy or surface tension. \(EM_{\text{f}} - \Delta H_{\text{f}}(r)/r\) is the surface energy, as expressed in Eq. (3). The factors involved are the surface free energies, particle radius, molar volumes and the adsorption energies of both the metal and the resultant metal hydride.

\[
EM_{\text{f}} - \Delta H_{\text{f}}(r)/r = \left[\gamma_{\text{MH}_2}(r) \left(\frac{V_{\text{MH}_2}}{V_M} \right)^{2/3} - \gamma_M(r) \right] + E_{\text{ads}} \quad (3)
\]

As shown in Fig. 8, the primary process of nanoconfinement involves finding a nanoporous material with preferably uniform pore sizes, which can be used as a scaffold, and then confining the hydride materials into those pores [142]. In such a way, the particle growth and agglomeration of the hydrides would be limited to the pore sizes of the scaffold, resulting in ‘confined’ particle sizes. Compared to other techniques such as high-energy ball milling, this is a more direct preparation of hybrid composites with the loading of small-sized hydride particles. Nanoconfinement of various hydrides (such as ammonia borane and dimethylamine borane) in a carbon or MOF material has been investigated both theoretically and experimentally, and the modelling predictions were in agreement with the experimental results. Importantly, the theoretical calculations also indicated that effects of particle sizes on the thermodynamic properties can only be envisaged when particle sizes are smaller than 2–3 nm [143–146]. In recent years, the technique of nanoconfinement has been employed on hydrides to modify their thermodynamics, aiming for the reversible hydrogen storage in practice (Table 1) [147–176]. Melt infiltration, as one of the routes to nanoconfinement, introduces nanoparticles of hydrides into a nanoporous scaffold material. This presents several benefits in terms of material properties including enhanced surface area, more grain boundaries and diffusion distances in the nanoscale, which lead to improved hydrogen desorption/absorption kinetics.

This concept to nanoconfine chemical reactions has been well elaborated in several review papers [177–180]. As a new piece of nanoconfined chemistry, it has been recognized as an important technique in the field of nanotechnology to improve or modify the profiles of chemical reactions. For hydrogen storage purpose, more implementation of this technique is expected in the near future.

Synthesis of new generation light-weight composite structures

Another thought is that the employment of light-weight hybrid hydrides has the potential to achieve better performance for hydrogen storage. To synthesize the light-weight compounds, the choice of elements should come from the elements with atomic number below 20. As known, the majority of compounds from this category are intrinsically very air/moisture sensitive, and as a result the induced degradation is a critical issue that needs to be addressed.

Recently, a breakthrough research gave new expectations to overcome this problem [181]. The authors embedded the air sensitive magnesium hydride in a gas selective polymer matrix called polymethyl acrylate (PMMA). The pictorial representation is shown in Fig. 9. Since the embedded hydride was prepared in the order of quantum dots, the reactive and fast reaction kinetics was claimed on the resulting composite. Such thinking could be applied to other high capacity hydride materials with thermo-dynamical shortcomings.
Research trends on ionic liquids for hydrogen storage applications

Ionic liquids as hydrogen storage materials

The unique physico-chemical properties of ionic liquids make them attractive for hydrogen storage applications. The simplest idea is to find a low molecular weight but hydrogen rich ionic liquid that can serve as a hydrogen storage material. Furthermore, the H₂ release rate, operating temperature and H₂ purity are other key criteria that have stimulated intense research efforts towards development of new ionic liquid compounds with improved hydrogen storage performance [29,182]. For instance, an ionic liquid of methylguanidinium borohydride \([\text{N}_3\text{H}_8\text{C}]\text{BH}_4 \) was reported by Doroodian et al. [183] to release 9.0 wt.% H₂ under both thermal and catalytic conditions. The combination of guanidinium cation and the octahydrotriborate anion was reported to yield guanidinium octahydrotriborate with a H₂ storage capacity of 13.8 wt.% [184]. An N-substituted amine-borane ionic liquid was also synthesized in good yield using silyl...
Protection of the H2 release rate. In the decomposition of formic acid, drides, the catalytic effects from the used ionic liquids also and substantially fastens the decomposition of chemical hydrides. While ionic liquids (as green solvents) afford an inert reaction medium which stabilizes polar transition states. It is also generally accepted that a mixture of selected chemical hydrides and ionic liquids would achieve synergistic effects. However, for ionic liquid to be practically applicable issues related to their high cost of decomposition, thermal stability and chemical stability should be taken into account. Also, for general applications, an appropriate mechanical/hydraulic pressing. For practicality, expanded natural graphite (ENG) with high stability and thermal conductivity has been proved to be effective as a heat transfer matrix. For example, addition of 10 wt% ENG and densification to 0.5 g/cm³ led to the enhancement of thermal conductivity from 0.10 to 0.56 W/mK for MOF-5/ENG composite at room temperature. Various processing routes for porous materials, as listed in Table 2 including foaming, coating, templating, slip casting, granulation, tape casting, extrusion, pulsed current processing, mechanical/hydraulic pressing, and testing techniques for shaped structures have been reviewed by several groups.

In order to choose a shaping technique, the preparation method and textural properties as well as other properties of the chosen powder material such as moisture sensitive, thermal stability and chemical stability should be taken into account. Also, for general applications, an appropriate mechanical strength is necessary to ensure low abrasion in packed beds. In addition, a low flow resistance is expected to guarantee a low-pressure drop. Finally, it is essential that the shaping process is cost effective and not complex as well.

Processing of solid-state materials towards system integration

No matter what mechanism the selected material works on, if the material is in the form of loose powder, it is necessary to process such powder material before the system integration for hydrogen storage applications. Given a material-based hydrogen storage unit, both exothermic and endothermic reactions are involved during a charging/discharging cycle. To allow a hydrogen storage unit based on solid-state materials quickly reach the desired equilibrium within maximum hydrogen input and shorter refuelling time, the heat generated during adsorption from the material bed should be dissipated effectively to avoid a temperature rise in the material bed. The powder morphologies are usually not favourable for efficient thermal transport, which poses an issue on the system design. In a charging process, the heat of hydrogen adsorption on material beds, compression work and thermal mass from the inlet hydrogen gas are the main sources of heat generation. In the case of metal hydride beds, a noticeable temperature rise/drop can be expected in the charging/discharging cycle. The common solution is to integrate a heat-exchanger, which undoubtedly will compromise the performance from a system-level. Two types of techniques that have been employed in the processing/shaping of solid-state materials towards improving thermal conductivity and system integration for hydrogen storage are discussed below.

Powder shaping techniques

In order to improve thermal conductivity, powder materials are shaped into application-oriented structures such as beads, pellets or monoliths, and that enables the materials to pack uniformly. Shaping helps to maximize the bulk density, reduce wasted space in the storage container and resist attrition. For practicality, expanded natural graphite (ENG) with high stability and thermal conductivity has been proved to be effective as a heat transfer matrix. For example, addition of 10 wt% ENG and densification to 0.5 g/cm³ led to the enhancement of thermal conductivity from 0.10 to 0.56 W/mK for MOF-5/ENG composite at room temperature.

Electrospinning technique

Recently, electrospinning technique towards industrial applications has drawn special research interests. It is a method of spinning polymer fibres making them into nanosized fibres with potentially excessive length. Controllable porosity, 3D topography and functional characteristics are available to understand more about electrospinning and their potential applications in the field of biomedicine, filtration and sorption processes. Fig. 10 shows the schematic diagram of a typical electrospinning apparatus. In a strong electric field, the very thin charged jets of spinning polymer solution are formed from the needle and collected by the anode surface. This technique permits the continuous production of single or multi-filament materials, and the electrospun products display different textural properties depending on the evaporation rate and miscibility of solvent, polymer, and other...
<table>
<thead>
<tr>
<th>Method</th>
<th>Scheme</th>
<th>Description</th>
<th>Production volume</th>
<th>Binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniaxial pressing</td>
<td></td>
<td>Mix the active component with/without binder and press into moulds</td>
<td>Low</td>
<td>Application dependant</td>
</tr>
<tr>
<td>Coating</td>
<td></td>
<td>Deposit coating on chosen substrate</td>
<td>Medium</td>
<td>Application dependant</td>
</tr>
<tr>
<td>Foaming</td>
<td></td>
<td>Incorporate gas into particulate suspension and dry into foam</td>
<td>High</td>
<td>Yes</td>
</tr>
<tr>
<td>Templating</td>
<td></td>
<td>Use solid/emulsion templates to form desired shapes and ordered morphology</td>
<td>Low</td>
<td>No</td>
</tr>
<tr>
<td>Casting</td>
<td></td>
<td>Cast particulate slurry on different substrates</td>
<td>Medium</td>
<td>Yes</td>
</tr>
</tbody>
</table>
parameters employed. By adjusting these parameters, a porous or core-shell morphology can be fabricated \[219\].

For the processing of powder materials, electrospinning technique can be used to incorporate the fine particles into carbon nanofibers. Generally, the stabilization and carbonization processes follow the electrospinning step to stabilize the polymer and generate more porous structure. As shown in Fig. 13, the pathways between the metal catalyst and the pore structures can provide access for hydrogen molecules to penetrate deep into the fibres reaching the metal catalyst \[220\].

The studied composite materials so far for hydrogen storage are carbon nanofibers \[221\], metal/metal oxides carbon fibres \[222\], metal-carbon-fluorine system \[223\], carbon-coated Li\(_3\)N nanofibers \[224\], Co-electrospun Pd-coated porous carbon nanofibers \[225\], and LaNi\(_5\) nanofibers \[226\]. Thanks to these earlier contributions, the electrospinning technique opens up a prospective route to process powder hydrogen storage materials. For instance, nanofibrous composites with 3D porosity can be generated by encapsulation of MOF crystals \[227\]. Therefore, electrospinning presents a promising option for the system integration of powder materials into hydrogen storage units.

Concept of storing hydrogen in para form

Hydrogen storage for practical applications has been investigated for several decades. However, an effective materials-based solution is yet to come close to the market. To date, the common practice stays as storing pressurized hydrogen in high-pressure rated cylinders. The concept therefore needs to be changed around to work out in this regard.

Ortho-hydrogen and para-hydrogen

The existence of two forms of molecular hydrogen i.e. ortho-hydrogen and para-hydrogen, has been known to physicists and chemists for almost 90 years \[228\]. As shown in Fig. 12 \[229\], ortho-hydrogen is in a higher energy state than para-hydrogen. At first scientists were just inquisitive about the nature of the ortho- and para-hydrogen. Thanks to the rapid development in cryogenic hydrogen technology which gave more relevance to the difference between the two forms \[230–234\]. The equilibrium mass fractions of ortho-para hydrogen are temperature dependent as described by Eq. (4) \[235\]:

\[
X_p = X_o \frac{1 + 5 \cdot e^{-\frac{278}{T}} + 7 \cdot e^{-\frac{128}{T}}}{3}
\]

where \(e\) is the equilibrium concentrations; \(X_p\) is the mass fraction of para-hydrogen and \(X_o\) is the mass fraction of ortho-hydrogen.

As listed in Table 3, hydrogen at room temperature (300 K) is a mixture of 75% ortho-hydrogen and 25% para-hydrogen, and below room temperature the composition of ortho-para fraction varies. When temperature decreases to 20 K (liquid hydrogen), 100% para-hydrogen can be achieved \[236,237\].
Interests to hydrogen storage practices

The interest in the concept of storing hydrogen in para form stems from the fact that para-hydrogen has a lower energy state than ortho-hydrogen. It is therefore theoretically easier to store hydrogen in the para form. The equilibrium fraction of para-hydrogen is known to evolve to 100% as the temperature reaches 20 K. In an isolated state however, the conversion from ortho- to para-hydrogen follows slow kinetics and takes several days to complete, and thus the development of an
effective way to convert hydrogen from ortho form to para form becomes critical. Two primary approaches were provided to induce the ortho-para hydrogen transition [234]. In the first approach, hydrogen molecules are dissociated into atoms, which are then allowed to recombine. In the dissociated state, the two atomic nuclei are no more oriented with regards to nuclear spins. As the hydrogen atoms recombine, the generation of molecules depends on the equilibrium energy distribution dictated by the temperature. In the second approach, there is an influence of an inhomogeneous magnetic field on the nuclear magnetic field of the hydrogen molecule. The applied external field would trigger a spin reversal corresponding to an ortho-para transition. It is a necessity for the hydrogen molecule to be sufficiently close to the magnetic specie for the field to have an influence on the hydrogen molecule.

In practice, the transition mechanism is catalysed by any technique which is capable of producing hydrogen atoms or at least destroying the molecular bond between the two nuclei. Fukutani et al. [229a] reviewed the ortho-para conversion of molecular hydrogen on solid surfaces, and concluded that the conversion can be promoted in a physisorption state through interaction with surfaces of magnetic as well as diamagnetic materials such as Cu, Ag, graphite, Si, ice and MOFs. Kosone et al. [238] reported that ortho-para transition can occur on non-magnetic solids and applying an electric field can induce the catalytic hydrogen ortho-para conversion. Some early work and calculations [86,239–242] also demonstrated that an applied field can considerably ease the binding of hydrogen molecules on specific hydrogen storage materials via dissociative adsorption and diffusion on the surface. In the presence of an electric field, the binding energy per hydrogen molecule would increase to promote sorption, and removal of the applied field leads to the absorbed hydrogen atoms being released efficiently. Therefore, the applied electric field can operate as a switch for hydrogen uptake/release processes. Other studies [243–245] investigated the conversion of ortho-para hydrogen on several catalysts such as Cr2O3, Fe-modified zeolite and LaFeO3/Al2O3 at 77 K. The results revealed that the spin conversion process was strongly dependent on a number of factors including BET surface area, morphology, calcination temperature and magnetic properties of the catalysts used. Another solution [246] was put forward involving the introduction of a dielectric coating onto porous activated carbon, in order to attain higher hydrogen storage capacity. Enhanced hydrogen storage was observed, which was attributed to the stronger interaction between charged carbon surface and polarized hydrogen molecules resulting from field induced polarization of TiO2 coating. Considering the para-ortho conversion, a 2D axisymmetric geometric hydrogen storage model was developed for predicting the combined heat and mass transfer of the storage system [247]. It was reported that the conversion enables the filling of more hydrogen in the storage tank. Some measurement on a cryogenic adsorption hydrogen storage system indicated that the temperature-dependent conversion of ortho-para hydrogen was enhanced by the catalytic activity of the adsorption materials in the tank such as iron-benzene-1,3,5-tricarboxylate xerogel (Fe-BTC), and the energy balance must be taken into consideration in thermal analyses [248].

To enable long-term hydrogen storage, the transition from para-hydrogen to ortho-hydrogen must be prevented in the system. The interaction of para-hydrogen with a paramagnetic catalyst was reported to induce the conversion to ortho-hydrogen [249]. Oxygen contamination would also trigger the conversion of para-hydrogen to ortho-hydrogen [250]. Therefore, the minimization of oxygen contamination is required for a long-term storage of hydrogen. An
An experimental study [251] revealed that para-ortho hydrogen conversion became active after 10–15 days of dormancy when hydrogen temperature reached $70\text{ }^\circ\text{C}$. This conversion moved towards equilibrium in 25–30 days when the vessel's temperature reached $100\text{ }^\circ\text{C}$ at 50~g~L^{-1} density. A dynamic model was developed to characterize dormancy and loss of hydrogen from an insulated cryogenic pressure vessel [252]. Under the conditions employed in the study, endothermic heat absorption was shown to extend the loss-free dormancy period by 85% if the tank was initially 75% full. However, if the tank was initially 100% full, the effect was not significant since the tank reached the maximum allowable pressure prior to the conversion of a significant fraction of para-hydrogen to ortho-hydrogen.

Para-hydrogen converter

The production and storage of hydrogen in para form is crucial for long-term hydrogen storage solutions. Para-hydrogen can be produced through thermal equilibrium transitions, and near a temperature of 20 K the para-hydrogen fraction is nearly 100%. However, in the absence of catalysts, the rate of such inter-conversion is extremely slow. Enrichment of para-hydrogen can be performed by passing extra-pure hydrogen gas through a catalyst bed at low temperature. To prevent the re-establishment of the room temperature thermal equilibrium, it is better to store the enriched para-hydrogen in a cylinder with aluminium liner, since steel cylinders have paramagnetic properties that would catalyse the conversion rate of para-hydrogen to ortho-hydrogen. The ortho-para conversion is most efficient if done at the temperature of liquid nitrogen (77 K) in the presence of a catalyst.

Hövenner et al. [253] developed a continuous-flow, high-throughput and high-pressure para-hydrogen converter, as shown in Fig. 13. It was a two-stage, closed-cycle helium cryocooler with open catalyst chamber, and the use of iron (III) oxide hydrate with a particle size of 300–500 mm was reported to be efficient [254]. Fig. 14 shows the schematic view of the para-hydrogen production unit. In order to adhere to safety requirements, the unit was divided into two parts. One part consisting of the electronic devices was kept inside a maintenance building in the attic of the institute. The other part consisting of all H_2-containing parts including the cold head and bulk H_2 bottles, were mounted on the outside, and the connections were done through a wall of about 30 cm, and sealed [253].

The unit generates a continuous flow of 4L~min^{-1} of 98% enriched para-hydrogen at a maximum pressure of 50 bar. The time required for the complete production cycle, including cleaning and cooling to 25 K, is less than 5 h, and the actual conversion to para-hydrogen takes only 45 min of this time.
Conclusions

In the last decade, significant progress has been made in the search for suitable materials and concepts for hydrogen storage, yet no hydrogen storage systems have been developed that satisfy all the 2020 DOE targets. It is therefore essential to develop durable low-cost hydrogen storage systems with high usable storage capacity and suitable kinetic and thermodynamic characteristics.

Four key conclusions can be drawn from this critical review on the state-of-the-art in materials-based hydrogen storage solutions. Firstly, for porous materials, many efforts have been devoted towards the development of new materials with higher surface area and larger free volume. As reviewed from the literature, only less than 1 wt.% hydrogen adsorption capacities for porous materials were experimentally reported at ambient conditions, even for materials selected with higher BET surface areas. Furthermore, at 77 K and ambient pressure, the enhancement of hydrogen storage capacities caused by increased surface area larger than 2000 m2 g$^{-1}$ is quite limited. Therefore, attention should be focused on increasing reaction enthalpies up to ~20 kJ mol$^{-1}$, and it can theoretically be accomplished by introduction of Kubas binding, ionization, polarization and irradiation of the host materials as well as inducing H_2 spillover effect. However, there is no substantial progress on Kubas binding and H_2 spillover effect for H_2 storage applications in the last 10 years.

Secondly, for metal/chemical hydrides, the key aspect is to enhance the thermodynamics and kinetics of hydrogen release and uptake. In terms of kinetics, nanoconfined of the hydride materials can be an effective way to reduce their particle sizes and tailor the kinetics of hydrogen charge and discharge. With regards to thermodynamics, selection of less stable hydrides is a meaningful direction. Another promising approach is to develop more advanced ionic liquids as liquid hydrogen storage materials, or use ionic liquids as catalytic/supporting solvents to achieve synergistic effect in the chemical hydrides systems.

Thirdly, the processing techniques of solid-state materials towards system integration such as shaping and electro-spinning processes will be necessary to facilitate the transition of developed materials from lab to applications. We are mindful that other techniques may crop up with applicability in the processing of solid-state hydrogen storage materials towards system integration.

Fourthly, the concept of storing hydrogen in the para form was put forward due to the lower energy state of para-hydrogen. To enable long-term hydrogen storage at ambient condition, a converter of ortho- to para-hydrogen was demonstrated for the proof-of-concept. Thanks to these earlier contributions, significant advances in hydrogen storage continue to be made; we are still keen to see new concepts or developments emerging with regards to hydrogen storage solutions.

Acknowledgements

The authors would like to acknowledge the financial support from the South African Department of Science and Technology (DST) for research activities under HySA Infrastructure (Grant No. HTC004X), the National Research Foundation through the South Africa/China research collaboration grant (Grant No. HTC059X), and the CSIR-Young Researcher Establishment Fund (Grant No. HTC066P).

References

Li BY, Huang X, Gong RN, Ma MR, Yang XJ, Liang LY, et al. Catalyzed hydrogen spillover for hydrogen storage on...

