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The estimation of balance uncertainty using conventional satistical and error 

propagation methods has been found to be both approximate and laborious to the point of 

being untenable
1
. Direct Simulation by Monte Carlo (DSMC) has been shown to be an 

effective altenative
2
. The long simulation times of DSMC, when applied using conventional 

sequential codes, has been addressed by re-formulating the code to run on a multiple CPU-

GPU, platform. Simulation times spanning minutes have replaced those spanning several 

hours. Application of uncertainty analysis using DSMC has led to an improvement in both 

balance calibration-quality and calibration-time, and promises to add understanding and 

insight not only to balance performance, calibration systems, and balance uncertainty, but 

also to an improved understanding of commonly quoted statistical data. 

This paper extends the introductory paper presented in 2013
3
 to provide an overview of 

the current CPU-GPU system
4
. Data obtained from a six component internal balance is used 

to show how the relatively large quantity of data generated using DSMC can be  managed 

through the mechanism of data modeling. These models may be used to generate equivalent 

data related to balance loads as would be generated by a balance when performing a dead-

weight roll-polar. This is considered to be not only an effective analysis approach, it also 

provides a practical link between data generated by a DSMC simulation and data that can 

be physically generated by a balance.  Balance data from a roll-polar is used to show that 

balance uncertainties arising from the mathematical calibration model, the calibration-

loading, and the balance itself, can be seperated and quantified. This leads to the 

recommendation that verification of correct balance installation and the determination of 

installed uncertainty be obtained by performing a dead-weight roll-polar. This provides 

confidence in the balance installation, balance uncertainty data, as well as minimisation of 

installation roll-offset error. 

Nomenclature 

Polar = used to specifically indicate a roll scan  

%FS = % =  percentage of full scale 

PEs = Propagated Error (signal) - signal uncertainty propagated through a model of zero uncertainty. 

PEm = Propagated Error (model) - zero uncertainty signal propagated through model uncertainty. 

TPE = Total Propagated Error - signal uncertainty propagated through model uncertainty. 

CSLu = Calibration System Loading uncertainty 

DSMC = MCS  =  Direct Simulation by Monte Carlo or Monte Carlo Simulation 

NF = Normal Force 

PM = Pitching Moment 

SF = Side Force 

YM = Yawing Moment 

DOE = Design of Experiment 

MDOE = Modern Design of Experiment 

TMISC = Total miscellaneous errors including thermal, hysteresis, loading and PEs. 

MISC = Miscelaneous errors excluding load application errors 

ANOVA = Analysis of Variance 

                                                           
1
Balance specialist, ASC (Aeronautical Systems Competency),DPSS,CSIR, e-mail: pmbidgoo@csir.co.za 

 

D
ow

nl
oa

de
d 

by
 P

et
er

 B
id

go
od

 o
n 

Fe
br

ua
ry

 2
1,

 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

01
06

 

 55th AIAA Aerospace Sciences Meeting 

 9 - 13 January 2017, Grapevine, Texas 

 AIAA 2017-0106 

 Copyright © 2017 by CSIR-South Africa. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 AIAA SciTech Forum 

mailto:pmbidgoo@csir.co.za
http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2017-0106&domain=pdf&date_stamp=2017-01-05


 

American Institute of Aeronautics and Astronautics 
 

 

2 

 
Figure 1. Parallel Regression Scheme. The sheme is duplicated on a separate CPU for each component. 

I. Introduction 

he use of multiple regression statistics (ANOVA), to define the accuracy of an internal strain-gauged wind 

tunnel balance is known to provide only an approximate estimate. The absence of any relationship to the “true” 

values of the source data results in optimistic estimates of actual balance accuracy. If post-calibration confirmation 

points are obtained, the reported errors are a combination of balance error and errors in the application of the loads. 

The result is an exaggerated error which cannot be assigned to the balance alone. The accuracy of the calibration 

model itself is subject to balance-specific errors, load application errors (including alignment and dimensional 

errors), as well as regression errors. These are currently considered to be inseparable
5
. 

Numerous approaches to understanding and improving balance accuracy have been adopted. Such approaches 

include increased calibration data sets using automatic calibration machines, and Modern Design of Experiments 

(MDOE). However, in order to fully understand the underlying factors driving balance accuracy, the uncertainty of 

the loads applied during calibration and verification need to be known. Mathematical (statistical) modelling of the 

propagation of error through the balance calibration process has been shown
1
 to be possible but un-tenable for 

general application. Similarly, a Monte Carlo Simulation (DSMC) approach was found 
2
 to require long computation 

times combined with the need to manage and evaluate relatively large volumes of data.  

In 2014 it was demonstrated
4
 that the parallel processing capability of a multiple Central Processing Unit (7 

CPUs) combined with an array of  Graphics Processor Units (2000+ GPUs) could be used to perform a Monte Carlo 

simulation with computational times which are not much different from those required to perform a single 

regression and statistical analysis. The large volume of data produced by DSMC remained. 

The DSMC software referred to in this paper has only recently been completed in its current high-speed form. 

This paper presents some sample analysis results taken from a six-component balance, and provides some indication 

as to how the DSMC system can be utilized. The use of the trigonometric nature of the variation of a dead-weight 

load with roll angle is a practical physical reference for such investigations. The method requires only that the 

uncertainty in roll (angular uncertainty), and a single load magnitude (mass and gravity), be known in order to 

evaluate balance force measurement accuracy at a large number of off-calibration points. Evaluation of moment 

accuracy requires an additional moment arm (length) uncertainty value. Dead-weight roll polars are therfore used to 

examine DSMC data as well as to obtain balance data for verification purposes. 

While statistical analysis requires the assumption of constant variance throughout the six-dimensional calibration 

space, this assumption is not required in DSMC. Results are therefore a function of a particular point in the 

calibration space; that is, results are a function of load magnitudes and load-combination. This presents a problem 

with respect to general reporting and the provision of understandable and useable data suitable for use by the end-

user. 

II. MCS Overview 

The simulation process and its application are described by the author in Ref. 4. One perspective of the CPU-
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Figure 3. Uncertainties for NF and SF calibration loads 

 
Figure 4. Roll Polar Applied-Load uncertainties at 83% load. 

GPU structure for MCS regressions is illustrated in Fig. 1. Input data is in the form of quantities that are chosen to 

be as fundamental as possible. Wherever possible, the fundamental uncertainties are derived from secondary 

standards. Any fundamental value is expanded into a large number of values which, collectively, is equivalent to a 

combination of the supplied value and it’s uncertainty. Thereafter, random combinations of this data are selected to 

form numerous calibration data sets, which are then processed in parallel. Cross-sections through the resulting data 

are extracted for analysis. 

III. Calibration Load Uncertainties 

Simulation begins with the 

determination of fundamental 

uncertainties such as, for example, 

may be assigned to the applied 

masses and dimensions of a 

calibration body. These are then used 

to determine the uncertainty of each 

applied calibration load or moment. If 

the calibration load plan has been 

shown to be adequate for determining 

the calibration model (DOE), then it 

is equally suitable for the generation 

of a model of the calibration load 

uncertainties. The calibration system 

uncertainty can therefore be described 

by a CSLu model. The CSLu model 

can then be used to predict the 

hypothetical  loading uncertainty for 

any applied load in the calibration 

space. Figure 3 shows the uncertainty 

of each applied NF and SF load of a 

particular load plan in a particular 

calibration system. Figure 4 shows 

the predicted load uncertainty for an 

83%FS roll-polar that was generated 

using a model derived from the data 

in Fig. 3. 

By applying a gravitational load 

to the balance, and then rotating the 

balance through 360 degrees, a 

sinusoidal load on each of the four 

main components, NF, PM, SF and 

YM can be obtained both numerically 

and experimentally. Examination of the variation of uncertainty with roll angle is a useful way of examining 

calibration system loading uncertainty. It additionally provides an  approach to the generation and analysis of 

experimental data for verification of DSMC data.  

Some observations from Fig. 3, are given below: 

 

i. It can be observed that at 0 and 180 degrees roll angles, the SF load displays a greater uncertainty, (even 

though it is not loaded), than the applied NF load. 

ii. The opposite is true at the positive- and negative-90 degree roll angles where the largest uncertainty 

occurs in the unloaded NF component. 

iii. At the +/-45 degree and +/-135 degree angles the uncertainties are the same for the two components. 

iv. These observations can also be made in Fig. 4. 

 

The source of this unexpected result is attributable to the uncertainty in roll angle. The NF load uncertainty is a 

function of the the magnetude of the applied load and it’s uncertainty, and the cosine of the roll-angle uncertainty, 
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Figure 6. Total Propagated Error. 

 

 
Figure 5. Model Uncertainty.  

whilst the SF uncertainty is a function of the magnetude of the applied load and it’s uncertainty, and the sine of the 

roll-angle uncertainty. The roll-angle uncertainty, therefore, results in the major source of uncertainty of a 

component being that which arises from a loaded orthogonal component. The roll-angle uncertainty required to 

prevent this orthogonal feed-through of uncertainty can be determined, and the transition can be demonstrated on a 

series of curves such as those in Fig. 4. 

IV. Separation of Uncertainties 

A wind tunnel test generally uses a single, fixed, calibration model. Ninety five percent of the data predicted by 

this model is expected to be within the statistical prediction intervals. However, this is true only in the same system 

and under the same conditions as that in which the calibration was performed. The information required when using 

a balance in a wind tunnel must relate to a different system, a new installation, and data which is acquired by a 

different data acquisition system. If the new installation is not exactly the same the calibration set-up, then the 

prediction intervals will not be valid. The statistical prediction intervals take into account all calibration system 

errors as estimated from the scatter of data about a chosen regression model. 

The various uncertainties that contribute to the overall balance uncertainty cannot be separated statistically. With 

MCS, separation of contributions to the total uncertainty can be achieved. For example, if  calibration-system signal 

uncertainty is set to zero, the MCS simulation can be used to generate balance load-prediction uncertainties which 

stem from load application and regression model errors only. Similarly, the uncertainties in applied calibration loads 

can be set to zero. The resulting uncertainty estimates contain only the combination of the effects of signal noise and 

calibration-model errors. Another alternative is possible; the mean calibration model produced by MCS can be used 

in combination with simulated signal noise. The resulting spread in generated loads is a reflection of the propagation 

of signal error through the model (PEs). This latter option is clearly useful in predicting the installed balance noise 

level in terms of load. This is both useful during installation and system evaluation. 

Further work is required with respect to the separation of the various forms of uncertainty and their combination 

under different circumstances. At present an “upper bound” on accuracy is generated by combining the effect of the 

uncertainty of the model with propagated signal error. This is evaluated at a load level equal to the balance design 

load. For historical reasons this is referred to as the Total Propagated Error (TPE), or more recently, the inherent 

balance accuracy limit. The TPE is taken to be a conservative estimate of the upper bound of uncertainty/accuracy 

for a perfectly installed balance. 

Figure 5 shows the calibration model uncertainty for NF, PM, SF and YM for a roll-polar at 83% load. Figure 6 

shows the inherent balance accuracy limits (Total Propagated Error), for the same polar. The amplification in the 

total uncertainty due to the propagation of signal noise, through a model with uncertain coefficients, is clearly 

significant.  
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V. Uncertainty Model Limitations 

In the case of the CSLu model, uncertainties are computed at calibration points and a model is fitted. In the case 

of calibration-model uncertainty and TPE, however, off-

calibration points are specifically required. To compute 

models for these cases, a large number of random 

balance loads are simulated. Uncertainty data for these 

loads are then computed. Typical data is shown in Fig. 7. 

The data is then regressed to obtain models which can  

be used to generate uncertainty data at any desired load-

level or combination of loads.  

Because of the random nature of the data used to 

generate uncertainty models requiring off-calibration 

evaluations, the model fit will not be very good
6
. The 

distortion seen in the polar plot of Fig. 6 is evidence of 

this. However, the MCS software supplies a re-

generation function for the random data and model, and 

the effect can be investigated. In general, although the 

shape of curves such as presented in Fig. 6, will be 

affected, the minimum, maximum and average values are acceptably repeatable. It is these sources of internal 

DSMC modeling error that result in anomolies such as seen in Fig. 9 where the TPE+Calibration-loading curve 

drops below the TPE curve. The use of simple linear uncertainty models instead of second order models may 

improve this. Further work is nevertheless required to improve these models. 

  

VI. Situation Dependent Uncertainty 

When examining loads reported by a balance, the expected uncertainty limits need to be known. The magnitudes 

 
Figure 9. Various uncertainty and prediction bands plotted on actual verification data (errors)  for NF.                                                                           

(14mmHARMS-HA1 balance). 

 
Figure 7. Typical TPE (NF) values for random 

off-calibration loads. 
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of these limits are not only dependent on the magnitude and combination of applied loads, but are also dependent on 

the situation in which they are obtained. For example, if only the balance and its calibration model are being  

evaluated immediately after a calibration, the prediction intervals are suitable. The prediction intervals can also be 

used as an indicator of the “closeness” of an installation to the calibration setup. When post-calibration evaluations 

are done immediately after a calibration, signal noise can be considered small because of the static nature of the 

calibration process. Filtering and averaging can be used to obtain low signal noise levels. The effect of the 

propagated signal error can then be expected to be small. In Fig. 9 errors in the balance-reported loads (NF), from a 

balance are plotted together with four limits which are currently being evaluated as acceptance and/or evaluation 

criteria. 

In the case of balance re-installation in the calibration system, additional uncertainties relating to installation  

need to be accounted for. Installation in a wind tunnel prior to a test requires that errors such as installation roll 

misalignment, pitch misalignment, as well as any additional roll or pitch measurement uncertainties are included. 

Some of the initial set-up errors such as roll- and pitch-misalignment can be identified, quantified and minimised 

through the use of roll-polar-based verification loads
8
. Peak uncertainty values in the region 0.6%FS for a fully-

loaded roll-polar have been observed for primary components when all contributions are considered. This large 

value is an indication that the added uncertainty resulting from installation in a new system is possibly the major 

contributor to test data static force uncertainty. 

  

VII. Data Presentation 

The range of possible situations for which data can be generated by DSMC is large. Ultimately, however, the test 

engineer needs to know how “good” a balance is, and how well it has been installed. With the realisation of the load- 

and situation-dependent nature of accuracy and uncertainty, provision of a useful answer becomes problematic.   At 

present the engineer is presented with minimum, maximum and mean values of three uncertainty metrics taken from 

a roll polar at full balance design load. These metrics are:  

 

1. Inherant Prediction Interval. 

This is useful in installation where “closeness” to the calibration system setup is being determined. It is a 

repeatability guide. 

2. Inherant Total Propagated Error (TPE). 

This is an estimate of the maximum error that can be expected from loads reported by the balance. 

3. Inherant  installed TPE. 

This is the TPE with additional errors that may arise during installation.  

 

Note that verification data are generated using the calibration body. Therefore, calibration body loading 

uncertainty is included in the metrics listed above. To indicate the absence of the calibration body loading 

uncertainty in these quantities, the word “inherant” is added to the uncertainty metric descriptor. These data can only 

be obtained indirectly through  a knowledge of the uncertainty of the applied verification loads. These are obtained 

from the CSLu model. 

VIII. Statistical Comparison – Prediction Intervals 

 

Current work is focussed on correlating calibration-model-derived statistical data with equivalent data extracted 

from MCS simulations. Attempts at understanding these correlations have lead to some interesting and informative  

results. For example, consider the prediction interval as computed using Eq. (1)
10

. 

                                                PI =  tα
2

,n−(k+1)
 √σ̂2(1 + Xp (X′X)−1X′

p)                                                                                (1) 

This equation requires an estimate of the variance, σ̂2, which is assumed to be constant and is usually estimated 

from the back-calculated errors (BCEs), of the calibration data with respect to the fitted regression curve. Prediction 

interval data generated for an 83%FS polar using the BCE as the source of the estimate of  σ̂2 is shown in Fig. 10. 

The mean value for these prediction interval data is 0.092%FS. 
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The CSLu model generates point-

by-point variance estimates for each 

load. If, instead, this is used for the 

variance, σ̂2, in Eq. (1), a better 

estimate of the prediction interval is 

obtained. Data generated in this way 

is included  in Fig. 10. The mean 

value for this curve is 0.091%FS. The 

difference  between the BCE-based 

prediction interval of 0.092%, and the 

average value of point-by-point 

prediction intervals of 0.091%, is 

small. Larger differences have been 

observed. The difference is attributed 

primarily to the fact that the back-

calculated-error is a global curve-fit 

parameter derived as an average over 

the whole calibration space. It should 

not be forgotten that once the balance 

is removed from the calibration 

system, these prediction intervals are 

no longer valid.  

IX. Separation of Uncertainties 

The closing statement in the previous paragraph captures the problem with respect to the estimation of installed 

balance uncertainty/accuracy. In order to achieve a reasonably representative estimate of installed balance accuracy, 

it is usefull to separate all contributions and to be able to selectively combine only those which are applicable under 

a given set of conditions. This cannot be discussed fully in a document of this length. However, an approach to the 

determination of the contributions to total balance uncertainty in the undisturbed calibration setup will be given here 

so as to provide some insight into how this separation of uncertainties is achieved. 

The modeling of uncertainties, such as the calibration system loading uncertainties (CSLu),  has been shown to 

be useful. The CSLu model can be used to generate the variation of uncertainty with roll angle for a dead-weight roll 

polar. Experimental data obtained from the same roll polar can then be evaluated against these simulated uncertainty 

data. The following discussion uses this to assist in the seperation of uncertainty contributions. 

A single MCS run produces many possible calibration models (300), each of which might feasibly be generated 

in any repeated calibration on the same system. The mean of these models is similar to that obtained by single  

regression of the original calibration data which is the model which would be used in practise. These models, 

although they are spread about a 

model that itself is subject to error, 

and is generated from one set/sample 

of  calibration data, nevertheless  

provide, (by their variation), usefull  

information about the extent to which 

it can be expected that any model will 

vary about the “true model”, given the 

fundamental system uncertainties. 

Consider the errors in 

experimental data shown in Fig. 11. 

The data shown are errors as 

computed by comparing balance roll-

polar data with an ideal sinusoidal 

function
8
 (the best available reference 

for accuracy evaluation).  The plots 

shown in Fig. 11 are obtained using 

the same, fixed, set of balance data 

 
Figure 11. Balance errors for a single roll polar after processing 

the response data through eight feasible calibration models. 

 
Figure 10. Positive Prediction Interval values for NF for an 83%FS 

roll-polar. 
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with the errors generated in the same way for each of a 

series of eight feasible calibration models (eight 

simulation runs). The plot shown in Fig. 11 is for NF, but 

the same can be done for SF, PM and YM. 

Figure 11 provides information regarding the variation 

in the error of the balance-reported load due, primarily, to  

variations in the calibration model. Looking beyond the 

larger variations in error between the models, it can be 

seen that there are smaller random variations that are 

common to the curves generated by all models. By 

subtracting an average of the data from each model , the 

common errors are separated out. The resulting plots and 

the removed common errors are shown in Fig. 12 and Fig. 

13 respectively. This process distorts the error data since 

the average of the eight models will have a bias. (An 

infinite set of models will have no bias). The approach 

does however provide for effective illustration.  

The common variations shown in Fig. 13 are independent of the calibration model used. Consequently their 

source can be assigned to the balance signal data. The variations shown in Fig. 12 are due to variations in calibration 

model only. These can be seen to be sinusoidal in nature. The actual error-free magnitude of the applied NF varies 

cosinusoidally with roll angle. Since the errors are obtained by comparison with an ideal cosine function
8
, sinusoidal 

variation in error implies that this error can be expressed as a small phase shift (difference in roll angle), between the 

ideal cosinusoidal loads and those reported by the balance. The error data for NF, PM, SF and YM are shown in Fig. 

14 for one sample calibration model. These curves suggest that the phase shift might be a constant value for the four 

components. However, if the data is regressed
8
 such that the phase shift angle is extracted, it can be seen that this is 

not the case. Phase shift data for a particular calibration 

model at this load level are given in Table 1. These 

differing values for phase angle are not unexpected 

because each component is regressed independently. Each 

component will therefore have it’s own unique error 

characteristics. 

Since the polar data was aquired soon after a 

calibration (without disturbing the system), it must be 

concluded that the sinusoidal portion of the error must 

exist in the calibration model(s). This, implies that the 

 
Figure 12. Underlying error sinusoids for data 

processed through eight feasible models. 

 
Figure 13. Errors which are independent of the 

calibration model. 

 
Figure 14. Model error contributions for NF, PM, 

SF, and YM. 

 
Figure 15. Illustration of Calibration Model Bias 

expressed as a phase shift. 

 

Table 1. Errors as phase angle. 

Component Phase Shift (deg) 

NF -0.03 

PM 0.04 

SF 0.04 

YM 0.01 
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local calibration model errror can be expressed in terms of a roll angle bias, which can be evaluated and modeled 

after calibration. The expression of balance modeling error as a phase shift angle is illustrated in Fig. 15. 

 

X. Uncertainty Accounting 

 

If the 2σ

 (2 standard deviations), value of 0.12% for the roll-polar error data shown in Fig. 11 is used to describe 

the total error for the  polar, and a 2σ value of 0.072%, taken from the data in Fig. 12, is used to describe the model 

error, there is a difference between the two of 0.096%, which must be attributed to a combination of loading error, 

signal error, PEs, hysteresis and thermal drift (TMISC – total miscellaneous contribution). (A 2σ value taken from 

Fig. 13 is 0.097%.) 

 

    TMISC =     Total Uncertainty  -  Model Uncertainty   

                       0.096      =  √       0.122                 −             0.0722 

 

An indication that these are reasonable estimates is obtained by comparison with predictions from the CSLu 

model discussed in paragraph III. A mean value of the CSLu model over the 360 degree roll polar is expected to be 

be similar (but smaller),  than the value of 0.096% extracted from the roll polar data. The average value obtained 

from the CSLu model is 0.076%. A further breakdown can now be attempted. If this is subtracted from 0.096% the 

difference can be assigned to the remaining items listed under miscellaneous contributions viz, PEs, hysteresis and 

thermal drift. This is estimated to be 0.059%. 

The loading error can also be estimated from the polar data. The loading error shown in Fig. 13 can be seen to be 

relatively repeatable at each roll angle, irrespective of the fact that a traverse was performed in both roll directions. 

Therefore, if the mean error at each point is assigned to loading error and and a 2σ value (0.09%) is subracted from 

the data, the remaining data should be a reasonable estimate of unaccounted-for MISC errors such as PEs, hysteresis 

and thermal drift. The mean loading error and the extracted additional errors are shown in Fig. 16 and Fig. 17 

respectively. A 2σ value for MISC computed from the data in Fig. 17 is 0.048%. This is a larger than the 0.059% 

calculated using the CSLu model in the previous paragraph primarily due to the difference in loading error 

estimates. 

The uncertainty accounting for the polar is summarised in Table 2 and Table 3. The simplified approach to 

uncertainty accounting described here is intended primarily as an illustration of the methedology but still raises 

some questions. One such question is the relatively small value of 0.091% for the prediction intervals, quoted in 

paragraph VIII, when compared to the total error of 0.12% given in Table 2. 

Notwithstanding the fact that the value of 0.12% is obtained from data of a single polar, the polar contains 49 

off-calibration loads. It is reasonable to expect the overall uncertainty to lie within the prediction intervals. Firstly 

the prediction value can be varified by DSMC. By setting the (propagated) signal variance to zero, an uncertainty 

value for the calibration model (PEm) was obtained. Twelve simulations were performed to ensure consistency of 

                                                           

 The 2σ value used here is a tool to estimate the order-of-magnitude of effects. It has no statistical significance 

since the data is not Gaussian. 

 
Figure 16. Mean error assigned to Calibration body 

loading error 

 

 
       Figure 17. Baseline balance uncertainty (MISC) 
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results. The average model uncertainty for an 83% roll-polar was found to be 0.0909% with a standard deviation of 

0.0027%. This is close to the statistically determined value of 0.092% and the single MCS value of 0.091 shown in 

Fig 10. This uncertainty includes loading errors and  signal errors only insofar as they affect the uncertainty of the 

generated model. It appears, therefore, that prediction intervals are primarily an estimate of model uncertainty. The 

roll polar total uncertainty data of 0.12 given in Table 2 contains  model uncertainty as well as propagated signal 

error combined with hysteresis and thermal drift.  

If, then, the value of 0.091% is the average value for the polar prediction interval, and this is the model 

uncertainty, what then does the 2σ taken from Fig. 12 represent? The model uncertainty value of 0.072%, was 

estimated from a relatively small sample of eight feasible models. This interval of ±0.072% falls, quite rightly, 

within the actual prediction interval of +/-0.091%, and one might accept this to be a valid estimate for the sample. 

However, the model uncertainty value of 0.072% is obtained using models, each of which is a mean model taken 

from a sample size of  300 calibrations (one simulation). The value is therefore more correctly a crude 2σ estimate 

of the standard error of the mean for the model (notwithstanding the invalidity of the statistical 2σ value).  

In the foregoing discussions, three methods have been used estimate the prediction intervals and one to estimate 

a 2σ value for the model standard error. This data is summarised in Table 4. 

 Table 2. Separation of model error from total polar error. 

 

Uncertainty 

contribution 

%FS Data Source Note 

Total 0.120 Polar data Taken from 49 off-calibration data points 

using a sinusoidal reference
8
. 

Model 0.072 Polar data 
Obtained from polar data after extracting 

errors common to all (8) models. 

TMISC 0.096 

Polar data    

(Total minus 

Model) 
Total Miscellaneous:- Loading, Propagated 

Error (signal), thermal, hysteresis etc. 

TMISC 0.097 
Polar data        

(Figure 13.) 

 

  Table 3. Separation of TMISC uncertainty into Loading and MISC uncertainties. 

  

Uncertainty 

%FS 

Source 

 

Note 

 

TMISC 0.097 
Polar data 

(Fig.13.) 

Miscelaneous: Loading, Propagated 

Error (signal), thermal, hysteresis etc. 

 Loading (1) 0.076 CSLu  Loading error from simulation model. 

Loading (2) 0.090 
Polar data 

(Fig 16) 

Loading error estimated from Polar 

data. 

MISC (1) 0.059 

Polar data 

minus         

CSLu 

Estimated from TMISC minus loading 

error estimate from DSMC.  

MISC (2) 0.048 
Polar data 

(Fig 17) 

Estimated from TMISC minus loading 

error estimate from polar data. 

 

D
ow

nl
oa

de
d 

by
 P

et
er

 B
id

go
od

 o
n 

Fe
br

ua
ry

 2
1,

 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

01
06

 



 

American Institute of Aeronautics and Astronautics 
 

 

11 

XI. Operational Balance Accuracy 

During wind tunnel testing there is no uncertainty attributable to applied loading. Therefore, loading uncertainty 

need not be included in the total uncertainty model. Also, if the model error can be expressed as a roll bias, it can 

also be neglected, minimised or at least quantified by performing dead-weight roll polars. The baseline inherent 

balance uncertainty will then be the MISC uncertainty (given  in Table 2 as being between 0.059 and 0.048 percent 

of full scale for that particular load level). To this must then be added uncertainties arising from increased thermal 

stress, installation roll and pitch bias errors and propagated signal error, particularly if the signal noise level is 

significantly different from that in the calibration system. 

The example used in this paper is included for purposes of providing some insight into a conceptually complex 

approach to uncertainty analysis. In practise, the addition or subtraction of various contributions to the final 

operational uncertainty estimates is done in terms of complete uncertainty models. The result is a direct computation 

model which can be used to generate point- specific balance uncertainty data during a wind tunnel test. Polar-

specific data is only required to be generated during balance uncertainty evaluation or installation.  

 

XII. Conclusion 

The high speed version of the MCS system has only recently become functional. It will take time to fully 

understand balance uncertainty in a vastly variable system. What has become clear, however, is that the MCS 

system has moved balance data evaluation entirely into the realm of uncertainty, and by so doing has provided an 

effective microscope which has proven to be an effective research platform and quality assurance tool. The use of 

dead-weight roll polars to analyse a balance, investigate uncertainty, and to perform improved installations has also 

proved valuable. The work to date has yielded positive results. Development of the system has led to numerous 

improvements which are best illustrated by an improvement in calibration data quality being achieved in a reduced 

amount of time. The provision of comprehensive accuracy data for an installed balance has not yet been achieved, 

not least of all because of the omitted thermal contributions to uncertainty.  
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