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Abstract—This paper reports on an analysis of isiXhosa speech
produced by adult language learners. The learners whose speech
was recorded were all acquiring isiXhosa as an additional
language and the majority of the students had beginner level
oral proficiency skills. The speech samples were produced and
recorded during the development of a Mobile Assisted Language
Learning (MALL) application to support clinical communication
skills training at Stellenbosch University’s Faculty of Medicine
and Health Sciences. The aim of the application was to provide
a means for students to practise their oral skills and improve
their pronunciation in isiXhosa. The speech data was processed
manually as well as automatically and the results reveal that
30% of the recordings do not contain suitable audio. It was
also found that, on average, absolute differences between first
language speakers and additional language learners are not
good indicators of proficiency. However, automatically derived
proficiency measures for the majority of the learners improved
during the course of a semester.

I. INTRODUCTION

Clinical communication skills training is part of all the
undergraduate programmes offered by the Faculty of Medicine
and Health Sciences at Stellenbosch University. The Human
Language Technology research group at the CSIR’s Meraka
Institue collaborated with the isiXhosa language tutors at the
faculty on the development of a Mobile Assisted Language
Learning (MALL) application that could supplement isiXhosa
lectures and course material. The main aim of the application
was to provide an opportunity for students to improve their
oral proficiency in isiXhosa.

Lecture time for clinical communication skills training
is limited and does not allow for extensive pronunciation
training. In addition, many students are hesitant to speak
isiXhosa (especially in a full classroom) because they find the
pronunciation difficult. It was therefore decided to develop an
application that students could use to practise their pronunci-
ation in their own time and at their own pace.

Some language learning applications prompt students to
record their own voice and compare their recording to a target
pronunciation of the utterance. However, in a preparatory study
on user preference, students indicated that they did not like
listening to recordings of their own voices [1]. Moreover,
by comparing the two recordings students cannot always tell
where the errors in their own pronunciations are or what they
should do to improve their pronunciation to sound more like
the target speaker.

These drawbacks are addressed by incorporating Automatic
Speech Recognition (ASR) into the language learning environ-

ment [2]. Phone recognition is used to analyse the properties
of the student’s speech. Some of the signal properties can be
used to derive pronunciation scores and these scores, in turn,
can be used to evaluate the speech and to provide feedback
on pronunciation [3], [4]. Signal properties that are commonly
used for this purpose include Rate of Speech (ROS) and the
acoustic match between the utterance and previously trained
models of the target speech [5]. This match is quantified in
terms of a likelihood score, e.g. the Goodness of Pronunciation
(GOP) score [6].

However, it is well-known that the performance of ASR
systems trained on speech produced by first language (L1)
speakers deteriorates when they are used by non-native (L2)
speakers [7], [8], [9]. In addition, meaningful pronunciation
scores can only be derived from utterances that contain speech
and in which the speech can clearly be discerned from back-
ground noise. Recordings should therefore be pre-processed
before pronunciation scores can be extracted.

During the development of the ASR-enabled MALL appli-
cation, speech data from the target user group was collected.
This paper reports on an analysis of the collected data. The aim
of the analysis was to determine how many of the recordings
are suitable for the derivation of meaningful pronunciation
scores. In addition, ROS and GOP values were extracted
from the recorded data and compared to scores derived from
isiXhosa speech produced by L1 speakers.

II. BACKGROUND

South Africa’s official languages can all still be classified
as under-resourced and, as a consequence, the development
of language and speech technology is not at an advanced
level. However, a number of resource development projects
have been successful in providing speech data for technology
development, e.g. [10], [11], [12], [13], [14]. While some
of these corpora include examples of accented speech, none
contain examples of learner speech. Examples of speech
produced by learners therefore had to be elicited and recorded
for the purposes of this study.

Experience has shown that performing basic quality checks
during data collection can enhance the quality of the collected
data substantially [15]. Although the collection of the isiXhosa
learner speech was not an extensive resource development
project, similar automatic quality measurements were used to
identify recordings that did not contain suitable data.
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For many languages speech processing technology has
advanced to a level where it can support various applications.
One such an application is ASR-enabled Computer Assisted
Language Learning (CALL) systems and, more recently, ASR-
enabled MALL applications. Proficiency indicators derived
from ASR output can be used as a means to measure different
aspects of oral proficiency automatically [16], [17]. In Com-
puter Assisted Pronunciation Training (CAPT) systems, au-
tomatically derived proficiency indicators are used to provide
real time feedback on pronunciation [18], [19], [20], [21], [22].
The aim of the current study was to collect samples of learner
data that could be used to develop an ASR-enhanced MALL
application [23]. This paper reports on an analysis of the
collected data and compares the pronunciation indicators that
were derived from useable recordings with similar measures
derived from native data.

The data sets that were used in this study are described in
the next section. Section IV provides an overview of the pre-
processing that was performed on the data to identify suitable
utterances. Experiments and results are presented in Sections V
and VI, followed by a discussion in Section VII.

III. DATA

During the current investigation, L1 speech as well as L2
(learner) speech were used. Table I gives an overview of the
different data sets.

A. First language isiXhosa data

The isiXhosa component of the NCHLT speech corpus was
used as an example of L1 speech in this study [13]. This data
set includes speech produced by 209 native speakers (balanced
in terms of gender) of the isiXhosa language, with a total
duration of just more than 56 hours. Associated transcriptions
include 29 130 unique types and 136 904 tokens. A pre-
defined test set that was released with the corpus includes
4 male and 4 female speakers. For the purposes of the current
study a development set, also consisting of 4 male and 4
female speakers, was selected from the training data (Row
3 in Table I).

Not all the utterances in the NCHLT speech corpus are
unique. The isiXhosa training set contains 40 873 utterances,
of which 15 500 are unique. Only the subset of unique
utterances were used for acoustic model development during
the current investigation. (Row 2 in Table I)

B. Learner data

The L2 isiXhosa data was collected in two phases. During
both phases the students were asked to read target utterances
and their responses were captured using a data collection tool
on a mobile telephone. The target utterances were derived from
the lecture notes of the isiXhosa clinical communication skills
module the students were enrolled for.

1) Tygerberg 2014: The first batch of data was collected
from students who had already completed one semester of
clinical communication skills training in isiXhosa. All the
recordings were evaluated by a first language speaker of

isiXhosa as either being an intelligible version of the target
utterance, or not.

2) Tygerberg 2015: The second data collection phase co-
incided with a new group of students’ first semester of
isiXhosa clinical communication skills training. Each student
was requested to read 15 target utterances (1) at the beginning
of the semester, (2) after five weeks had passed and (3) during
the last week of the semester. This data was recorded to
identify changes (if any) in the acoustic properties of the
speech produced by the students.

Data set # Utterances Duration (h:m:s)
NCHLT Train 40 873 49:22:31

NCHLT Train Unique 15 500 20:54:29
NCHLT Development 3 008 03:46:35

NCHLT Test 2 770 03:06:29
Tygerberg 2014 2 167 02:04:43
Tygerberg 2015 986 01:06:32

TABLE I
Number of utterances and duration of different data sets.

IV. DATA PRE-PROCESSING

A. Automatic pre-processing

Automatic measurements of data quality that were devel-
oped during a previous project were used to identify utterances
that do not contain useable audio [15]. A Root-Mean-Square
based duration value of less than 0.5 seconds and failed forced
alignment were used to identify 20 empty files in the learner
data (3 in Tygerberg 2014 and 17 in Tygerberg 2015).

B. Manual pre-processing

The speech samples that were collected during the second
data collection phase (Tygerberg 2015) were manually labeled.
A number of factors that could have a significant impact on
the acoustic properties of the speech signals were identified.
The eight event categories that each file was checked for are
as follows:

• Empty: The audio file is empty.
• Device/Handling noise: Noise caused as a result of the

device being moved during recording or by a sound/beep
that results from the press of a button and an obstruction
of the device microphone.

• Low volume: Speech is too soft to understand what is
being said.

• Whispering: Speaker whispers during recording.
• Laughter: Speaker laughs while recording a prompt.
• Background noise: Any non-speech noise that occurs

during the recording that is loud enough and may have
an impact on recognition results.

• Background speech: Any speech that occurs in the back-
ground during the recording.

• Transcription mismatch: Speaker omits and/or inserts
word(s) or does not read the entire prompt.
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V. EXPERIMENTAL SET-UP

A. Baseline ASR system

HTK-based acoustic models were trained using the unique
sub-set of the NCHLT isiXhosa data (see Section III-A) [24].
Standard 3-state left-to-right HMMs were trained both with
and without semi-tied transforms. Speaker level cepstral mean
and variance normalisation (CMVN) were applied to the 13
mel cepstral coefficients that were derived from each speech
frame. All the utterances in the NCHLT isiXhosa training set
were used to derive the CMVN transform, not only the data
in the unique sub-set. Delta and delta-delta features were also
included in the feature vectors.

B. Adapted ASR system

Given that the L1 and L2 data was not collected under
exactly the same acoustic conditions, some form of acoustic
mismatch between the two data sets can be expected. To pre-
vent channel and other effects from influencing the proficiency
measurements, the models derived from the L1 data should be
adapted using the L2 data.

Model adaptation was approximated using a feature trans-
form. By re-estimating the CMVN feature transformations
from a combination of NCHLT and Tygerberg data before
training the acoustic models on the unique sub-set of the data,
the channel differences are diminished [25]. The individual
speakers in the two data sets were not taken into consideration
for the derivation of the CMVN transform. In stead, the male
and female data were clustered to simulate only two different
speakers in the adaptation data.

C. Speech proficiency indicators

Two metrics that can be used as indicators of pronunciation
were derived from the output of the ASR systems: Rate of
Speech (ROS) a Goodness of Pronunciation (GOP) score. ROS
was calculated as proposed in [16]:

ROS =
Np
Tsp

(1)

where Np denotes the number of speech phones in an utterance
and Tsp is the total duration of speech in the utterance,
excluding pauses. GOP corresponds to the likelihood ratio
defined in [6] as:

GOP (qi) =
|log(P (qi|O))|

NF (O)
(2)

where NF (O) corresponds to the number of frames in acous-
tic segment O. A GOP score was determined for each phone
qi in an utterance and utterance level scores were subsequently
obtained by taking the average of all the phone scores in the
utterance.

VI. RESULTS

A. Phone recognition accuracy

Table II shows a summary of phone recognition accu-
racy [24] values for different experiments. The accuracy values
give an indication of the acoustic match between the baseline

and adapted models and the L1 Test and L2 Tygerberg data.
The table shows the insertion penalty (IP) value for each ex-
periment, and provides the recognition accuracy (ACC) values
for models with and without semi-tied transforms applied.
Insertion penalty values were optimised using the evaluation
data described in Section III-A and the rows labelled “Dev:
NCHLT” and “Dev: NCHLT (Norm)” show the corresponding
recognition accuracy.

Evaluation Test IP ACC IP ACC (semi-tied)
Dev: NCHLT -32 80.91 -27 80.56

NCHLT -32 80.90 -27 81.39
Tygerberg -32 12.79 -27 15.26

Dev: NCHLT (Norm) -28 74.69 -27 74.31
NCHLT (Norm) -28 75.81 -27 76.37

Tygerberg (Norm) -28 50.80 -27 50.14
Tygerberg (2014) -28 55.27 -27 54.22
Tygerberg (2015) -28 38.92 -27 38.73

TABLE II
Phone recognition accuracy for different models and data sets.

The initial L1 acoustic model (“NCHLT”) generated a best
phone recognition accuracy of 81.39%, but using this model
to evaluate L2 data performs poorly: the corresponding result
for the Tygerberg data is only 15.26%.

It is possible to reduce feature mismatch by pooling all
the L1 training and L2 evaluation data and computing CMVN
vectors for two classes of gender (see Section V-B). Repeating
the initial evaluation tests with these normalised features
(“Norm”) resulted in much better recognition performance
(50.80%) of the L2 data. It is clear that not having speaker
specific, but gender specific feature normalisation and adding
the L2 data reduced the ability of the L1 models to recognise
the L1 test data: a reduction of about 5% absolute for the
“NCHLT (Norm)” tests can be observed in Table II.

The last two rows in Table II show the recognition accuracy
of the first and second data collections separately. Much better
recognition accuracy is achieved for the “Tygerberg 2014” data
set than for the “Tygerberg 2015” data set.

Recognition accuracy for the 2015 data set is much lower
than expected. The data was therefore inspected manually to
determine the cause of the deterioration observed in the results
(see Section IV-B). To select a set of “clean” utterances from
the 2015 data set, the recognition accuracy corresponding to
four selection options was determined. Each option consisted
of a set of manual pre-processing categories. If any of these
categories were marked for a particular utterance, the utterance
was discarded. The event categories were combined as follows:

• Option 1: Empty, Whispering, Laughter, Background
speech, Transcription mismatch

• Option 2: Empty, Low volume, Whispering, Laughter,
Background speech, Transcription mismatch

• Option 3: Empty, Device/Handling noise, Low volume,
Whispering, Laughter, Background speech, Transcription
mismatch

• Option 4: Empty, Low volume, Whispering, Laugh-
ter, Background noise, Background speech, Transcription
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mismatch
Table III lists the recognition accuracy values corresponding

to the four options. The results in the table are ordered
according to the number of utterances (“#Utts”) that were not
discarded.

Option ACC ACC (semi-tied) #Utts
1 44.73 45.11 678
2 46.66 47.41 616
3 45.60 46.54 484
4 47.18 47.62 434

TABLE III
Phone recognition accuracy for manually pre-processed Tygerberg 2015
utterances for different combinations of manual pre-processing criteria.

Event categories such as Empty, Whispering, Laughter,
Background speech and Transcription mismatch are expected
to cause more severe recognition errors than the other cate-
gories. All utterances with noise events included in Option 1
were therefore removed to select a reasonably clean data set.
For the remaining 678 utterances a recognition accuracy of
45.11% was measured. Also removing low volume utterances
from this set (Option 2) improved recognition accuracy further
by 2.20%, while a total of 616 utterances remained. The counts
for Options 3 and 4 show that removing Device/Handling and
Background noise resulted in much smaller data sets (484
and 434 utterances), with only 0.2% improvement in phone
recognition accuracy for Option 4.

Given the results in Table III it was decided to conduct
further experiments with the data set selected using Option 1.
The recognition results are similar to those obtained for the
Tygerberg 2014 data set and the biggest number of utterances
are available for proficiency analysis. Furthermore, the phone
recognition accuracy values in Tables II and III show that the
results obtained for the models for which semi-tied transforms
were applied are consistently better than the results for models
without these transforms. Only results for models with semi-
tied transforms are therefore reported in subsequent sections.

B. Global measurements

Two speech proficiency indicators, ROS and GOP, were
used to conduct further analyses on the L2 data. Since both
these measures are derived from recognition output, it is of
value to compare their global values with the recognition
experiments described in Section VI-A. Table IV shows the
ROS and GOP values corresponding to the semi-tied results for
the test sets in Table II. The values in the table correspond to
the mean ROS and GOP values (standard deviation in brackets)
of the utterances in each test set and the number of utterances
for each set (#Utts) is also indicated in the table.

Table IV shows that the mean ROS value for L1 speech
(NCHLT) is 8.34 phones per second. Similarly, a low GOP
estimate of 1.09 indicates good orthographic alignment of
transcriptions and acoustic models for the L1 data. The mean
GOP value (1.43) for the updated acoustic model (pooling
both L1 and L2 speech data during feature transformation) is

Evaluation test ROS GOP #Utts
NCHLT 8.34 (1.64) 1.09 (0.93) 2770

Tygerberg 11.54 (3.37) 6.89 (2.01) 3133
NCHLT (Norm) 8.34 (1.69) 1.43 (1.20) 2770

Tygerberg (Norm) 7.98 (1.82) 3.09 (1.81) 3133
Tygerberg (2014) 8.18 (1.75) 3.02 (1.70) 2255
Tygerberg (2015) 7.47 (1.88) 3.29 (2.04) 878

Tygerberg (Option 1) 7.46 (1.54) 2.83 (1.48) 615

TABLE IV
Mean ROS and GOP values for different data sets.

slightly higher than the corresponding value for the L1 only
model, while ROS remains constant. The differences observed
between the Tygerberg and Tygerberg (Norm) results clearly
indicate that reducing feature mismatch has dramatic implica-
tions for L2 data. Much higher mean ROS and GOP values
resulted from poor recognition of L2 data for the unmatched
model. While ROS for the matched model decreased slightly,
the mean GOP estimate for L2 data is almost twice (3.09) that
of the L1 estimate (1.43).

The last three rows in Table IV show mean ROS and
GOP values for different subsets of the Tygerberg (Norm)
evaluation test. The mean ROS for the 2014 L2 data is close
to the corresponding L1 NCHLT value and the 2015 data set
deviates most from the L1 estimates, as could be expected.
A higher GOP of 3.29 confirms the poor recognition of the
corresponding experiment in Table II. Surprisingly, this data
set has a significantly lower mean ROS (7.47). The last entry
in Table IV confirms this low ROS value and a decrease in
mean GOP to a value of 2.83.

C. Comparing first and second language speakers

The mean ROS and GOP values presented in the previous
section were used to determine how the acoustic properties of
different data sets compare in terms of these measurements.
While the general trends provide vital information with regard
to channel mismatches, it is also important to keep in mind
that these metrics are highly speaker specific. Tables V and
VI present per speaker estimates of the L1 and L2 (Tygerberg
2014) speakers. The values in these tables clearly show speaker
differences. In Table V, the values correspond to the eight
speakers of the L1 test set, ordered according to the mean ROS
estimate for each speaker. The mean GOP estimate (standard
deviation in brackets) and the number of utterances per speaker
are also shown in the table. Finally, the last two rows in the
table correspond to the results obtained for two L1 speakers
who participated in the 2014 data collection.

The values in Table V indicate that the ROS values for L1
speakers ranged from as low as 6 to as high as about 10 phones
per second. GOP estimates seem to remain lower than a value
of 1.50 for the NCHLT test data. Table VI shows that the ROS
values corresponding to the Tygerberg 2014 L2 data are in the
same range as the values that were observed for the L1 test
data. However, the table also shows that the per speaker GOP
estimate ranges between 2.50 and 4.50.
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Speaker ROS GOP #Utts
504f 6.35 (1.39) 1.47 (0.89) 305
505m 7.57 (1.30) 0.42 (0.68) 312
502f 7.88 (1.41) 1.42 (0.99) 322
503f 8.08 (1.54) 1.35 (0.88) 365
507m 8.56 (1.18) 0.46 (0.58) 358
500m 8.98 (1.22) 1.43 (0.95) 365
506f 9.26 (1.43) 0.81 (0.74) 360
501m 9.50 (1.28) 1.31 (0.86) 383
027 8.08 (1.11) 1.90 (1.35) 128
005 10.41 (1.70) 3.45 (2.02) 164

TABLE V
ROS and GOP estimates for L1 speakers.

In terms of GOP, the value of 1.90 that was measured for
one of the Tygerberg 2014 L1 speakers (027) was within the
expected range. This is not the case for the second L1 speaker
(mean GOP value of 3.45). Listening to a random sample
of utterances generated by speaker 005 revealed fast speech
where other pronunciation effects such as vowel deletion is
apparent. Also, for a significant fraction of utterances the
audio is cut off, resulting in transcription errors. These two
observations explain the high mean GOP for this speaker.

Speaker ROS GOP #utts
018 6.21 3.07 169
015 6.26 2.65 144
044 6.95 3.21 138
010 7.40 3.64 31
011 7.49 3.91 30
028 8.01 2.63 73
012 8.08 2.45 166
033 8.10 4.57 139
031 8.20 2.07 217
004 8.34 3.65 167
034 8.51 4.68 94
022 8.44 2.73 278
017 8.54 2.91 30
008 8.97 2.71 136
038 9.58 2.85 73

TABLE VI
ROS and GOP estimates L2 speakers of the Tygerberg 2014 data.

1) Language training: A total of nine speakers in the
Tygerberg 2015 data set recorded test prompts before and
after a semester of clinical communication skills training (see
Section III-B). Speech proficiency indicators derived from the
two data sets were used to analyse the changes in the acoustic
properties of these recordings. Mean ROS and GOP values for
each speaker are shown in Tables VII and VIII respectively.
For each indicator, the tables show the values corresponding
to the beginning and the end of the semester as well as the
number of utterances remaining after manual pre-processing
according to Option 1 described in Section IV-B.

From Table VII it is clear that seven of the speakers initially
speak significantly slower than after a semester of training.
For one speaker (013) the average ROS decreases. Applying
Option 1 criteria during data selection results in all the data
associated with speaker 007 being discarded.

Speaker ROS (before) #Utts ROS (after) #Utts
041 5.32 (1.07) 4 7.62 (1.44) 13
045 6.29 (0.97) 13 7.70 (1.83) 9
040 6.34 (0.41) 15 7.51 (0.84) 14
014 6.39 (1.20) 16 8.86 (1.40) 17
003 6.93 (1.37) 13 7.52 (1.07) 12
016 7.02 (0.86) 15 8.51 (1.37) 13
042 7.59 (1.49) 8 8.19 (1.25) 14
013 7.19 (0.80) 10 6.65 (0.82) 10
007 - - - 0

TABLE VII
ROS estimates for eight speakers that recorded test utterances before and

after a semester of clinical communication skills training.

Speaker GOP (before) #Utts GOP (after) #Utts
040 2.86 (1.26) 15 2.47 (1.23) 14
013 3.62 (1.77) 10 3.35 (1.43) 10
041 3.84 (2.10) 4 3.75 (1.35) 13
042 3.26 (1.94) 8 2.72 (1.29) 14
045 2.08 (0.76) 13 3.34 (1.88) 9
014 2.38 (1.02) 16 2.71 (1.07) 17
016 2.82 (1.16) 15 4.18 (2.06) 13
003 2.52 (0.81) 13 3.41 (2.16) 12
007 - - - 0

TABLE VIII
GOP estimates for eight speakers that recorded test utterances before and

after a semester of clinical communication skills training.

Table VIII shows that even after removing the 263 utter-
ances corresponding to Option 1 (see Table III), per speaker
GOP estimates remain unstable. Half of the speakers obtain
slightly lower GOP values after a complete semester of
language training, while the GOP deteriorates for the other
speakers.

VII. DISCUSSION

The results presented in the previous section indicate that a
combination of the speech proficiency indicators (ROS and
GOP metrics) is sufficient to distinguish between L1 and
different L2 speech proficiency levels under designed acoustic
conditions. In general a significant offset between L1 and L2
speakers in terms of mean GOP estimates were established
that quantify the pronunciation difference between L1 and L2
speech. Similarly the ROS metric was found to be instrumental
to determine fast speech (affecting standard pronunciation) and
to track the progress of L2 learners.

In order to make reliable measurements, properly adapted
ASR models are particularly important. Acoustic mismatch
has an adverse effect on ROS and GOP estimates. The values
in Table IV for the “Tygerberg” evaluation test show just how
much these values may increase artificially. Acoustic mismatch
has to be minimised before L1 analysis of L2 data can be
attempted.

A simple CMVN feature normalisation was found to suffi-
ciently reduce the acoustic mismatch for the purposes of this
paper, but more sophisticated adaptation methods are certainly
possible. Further work on speaker adaptation methods could
be key to develop L2 evaluation systems using limited data.
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The adapted ASR models also proved successful in finding
reasonable ROS and GOP estimates for an L1 speaker within
the Tygerberg 2014 data set, while inspection of a second
L1 speaker confirms acoustic properties different from the
NCHLT L1 data.

A key difference between Tygerberg 2014 and Tygerberg
2015 is that the first data collection was conducted under much
more controlled circumstances than the second. For Tygerberg
2014 a technician was present during all the recording session.
In 2015, on the other hand, students were given a recording
device and asked to make recordings on their own. This
difference in recording conditions clearly reflects in the low
recognition accuracy (below 40%) for the Tygerberg (2015)
test (Table II).

Manual pre-processing of the Tygerberg 2015 data revealed
a list of eight event categories that could affect recognition
accuracy and consequently, speech proficiency indicators. The
removal of utterances pertaining to most of these categories
result in recognition accuracies comparable to the Tygerberg
2014 data. This finding shows the importance of data pre-
processing in real-world application of automatic evaluation
systems. Future research should address these problems.

Learner recordings made before and after a whole semester
of training suggest that, while learners become more proficient
with regard to speaking rate, pronunciation does not seem
to improve much during this time frame. The latter finding
seems to hold for the larger Tygerberg 2014 data set, where
global GOP estimates remained substantially higher than for
L1 speakers.

VIII. CONCLUSION

The results of this study clearly indicate that the pre-
processing of speech data is required before reliable indicators
of pronunciation proficiency can be derived from the data.
Different sources of acoustic variation should be taken into
account, e.g. recording conditions, speaker proficiency in the
target language, speaker idiosyncrasies, etc. The differences
between the two sets of learner data show that data collected
during a formal data collection campaign and during simulated
usage are quite different and that a substantial portion of usage
data (up to 30%) does not contain useable speech data. This
restriction should be kept in mind during application design
as well as data analysis.
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