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Abstract—The face, fingerprint and palmprint feature vectors
are automatically extracted and dynamically selected for fusion
at the feature-level, toward an improved human identification
accuracy. The feature-level has a higher potential accuracy
than the match score-level. However, leveraging this potential
requires a new approach. This work demonstrates a novel
dynamic weighting algorithm for improved image-based biomet-
ric feature-fusion. A comparison is performed on uni-modal,
bi-modal, tri-modal and proposed dynamic approaches. The
proposed dynamic approach yields a high genuine acceptance
rate of 99.25% genuine acceptance rate at a false acceptance
rate of 1% on challenging datasets and big impostor datasets.

Index Terms—face, fingerprint, palmprint, feature-level,
weighted

I. INTRODUCTION

Biometric systems acquire and evaluate the unique biolog-
ical and behavioural patterns from individuals. However, their
susceptibility to forgery and noisy data have led to identity
theft and system failure [1] [2]. This is especially a concern
in non-invasive biometric modalities such as the fingerprint,
face and palmprint, which are easier to acquire because they
are generally external. Furthermore, with the pervasiveness of
sensor data, due to its transfer through sensor networks, well-
planned access control is vital in the real-world. Many real-
world security problems change based on the application, but
are especially evident in automatic or unsupervised security
systems, in general.

A large number of security concerns were addressed by
introducing multiple sources of biometric information into a
single system [3] [4]. Moreover, these multi-modal biometric
systems have the potential to improve recognition accuracy
and application versatility. However, leveraging that potential
by performing multi-modal biometric fusion is not appropri-
ate to every application, for instance, achieving universality
or improving user experience. Achieving universality while
sustaining a high recognition accuracy in the case where one
or more biometric modalities are inadequately acquired is a
non-trivial problem [5] [3].

The development of multi-modal biometrics initially fo-
cused on fusing at the matching score-level – simply summing
the matching scores achieved by individual modalities was op-
timal for most applications [4]. A significantly improved and
relatively recent approach performs biometric fusion at the
feature-level. Effective feature-level fusion combines the fea-

ture sets of corresponding biometric modalities, while taking
into account their increase in dimensionality and compatibility
before classifying the result. Feature-level fusion schemes are
relatively understudied in the literature. This paper extends
our recently published feature-fusion guidelines; see [6] for
further details.

Furthermore, this paper provides a solution to the uni-
versality problem by constructing a dynamic feature-fusion
scheme that intelligently selects one or more given modalities
at feature-level. The fused feature sets are expected to yield
an improved recognition performance compared with the in-
dividual modalities, in the majority of cases. However, where
appropriate, the system uses only one modality or a reduced
combination of modalities based on their computed quality.
The key factor for excluding one or more modalities lies in the
case where it cannot be enhanced to a recognizable result. The
scope includes experimental analysis after varying the number
of training samples from one to five. The experimental results
are subsequently used to determine the system’s adequacy in
achieving universality.

II. RELATED STUDIES

Rattani et al. developed a multi-modal biometric identification
system that fused the face and fingerprint modalities [4]. They
found that feature-level fusion significantly outperformed the
matching score-level’s best approach. This was achieved by
sufficiently reducing feature dimensionality and normalizing
the features for compatibility. Furthermore, the extraction of
image region of interests (ROIs) were used for both modali-
ties. Two other face and fingerprint identification studies were
performed by [7] and [8], both using the Curvelet transform,
feature-fusion averaging followed by support vector machine
(SVM) classification. The results of the two studies were
not conclusive on the effectiveness of SVM classification at
feature-level. They also did not investigate the effectiveness of
feature-fusion concatenation – fusing features serially. Other
face, fingerprint and palmprint studies are limited to human
verification – a simple one-to-one database match.

Vatsa et al. [5] proposed a context switching multi-modal
biometric verification system consisting of the face, fin-
gerprint and iris. An SVM decides between a uni-modal
and multi-modal approach based on a non-linear threshold.
However, this decision is limited to selecting only one of the
three modalities or fusing all of them. Furthermore, fusion



is performed at the matching score-level and only human
verification is evaluated. This paper aims to extend their
context switching method to any combination of modalities
and to evaluate the human identification accuracy. Moreover,
the multi-modal feature-fusion guidelines founded in [6] are
applied in this paper in combination with context switching.

III. PROPOSED METHODOLOGY

This section explains the process of developing an im-
proved multi-modal biometric system by using a novel dy-
namic weighting algorithm.

A. Datasets

The ARFace dataset [9], SDUMLA fingerprint dataset [10]
and IITD palmprint dataset [11] were used in the experiments
discussed in Section IV. The five samples per 100 individuals
used for training and testing can be summarized as follows:

1) Face – The faces consisted of frontal poses with the
following expressions and props: neutral; laugh; neu-
tral dynamic lighting; sunglasses; and a scarf covering
from the nose down. Imposter samples were similarly
gathered from another 100 individuals.

2) Fingerprints – The left thumbprint images were used
consisting of various qualities ranging from partials
with absent core points and poorly-defined ridges to
well-defined ridges. Imposter samples were similarly
gathered from the left middle fingerprint of the same
individuals.

3) Palmprint – The challenging IITD palmprint dataset
was used instead of the popular, but near-ideal quality
PolyU1 [12] palmprint dataset. The originally tested
PolyU samples produced a perfect accuracy and was
thus excluded from this study. This result already shows
promise toward improving image-based uni-modal bio-
metric identification systems. The IITD palmprints con-
sisted of touchless captured hands with uncontrolled
poses. Imposter samples were similarly gathered from
another 100 individuals.

B. Automated Image Registration

Image registration is an important first step in biomet-
ric recognition. At the local level, there are unique points
within biometric data depending on the considered biometric
modality. These points are determined for automated image
registration based on the modality.

The fingerprint contains such points, located on ridge
curvatures, that are either unique or sharper than those in other
areas. The core point, also known as the reference point, is
often defined as the sharpest concave ridge curvature based
on the orientation field of the fingerprint image [13]. This
point is especially useful as it serves as a guide during image
registration, which is important for normalizing features.
The core point is used to allocate a ROI, which minimizes

1Captured in a controlled environment with user-pegs – restricting the
hand-pose and wrinkling.

the discrepancy of stretch and alignment differences among
multiple fingerprint samples of the same finger. Many pre-
vious approaches to reference point determination critically
rely on the local features such as Poincaré index or other
properties of the orientation field [13]. Poincaré works well in
good quality fingerprint images, but fails to correctly localize
reference points in poor quality fingerprints such as partials or
fingerprints with poor ridge and valley contrast. The solution
used in this paper applies an edge preserving non-local means
(NL-means) filter [14] before applying Poincaré.

A ROI can also be determined for facial images. The key
points are the eyes, nose and mouth, which are used during
facial image registration. These points are used to create a
border around the face, centred at the nose, which helps
to avoid typical changes to the face such as different hair,
occluded ears and neck. A large number of Haar-like features
are organized to create a classifier cascade. Haar cascading is
a popular method for detecting features that are used as key
points. Multiple Haar cascades are iterated when the selected
one fails to detect a key point.

The ROI for palmprint images is determined by extracting
the principal lines and applying the iterative closest point
method, which estimates the translation and rotation param-
eters between the input and test image by minimizing the
distance between the two sets of correspondence points [15].
This method ensures that the key points between fingers,
used as a boundary for the ROI, correspond between the two
images.

A fall-back mechanism is required in case of image reg-
istration failure. The fall-back mechanism, used during key
point detection failure of the fingerprint, face or palmprint,
is determined by using the confidence score of the versatile
local binary pattern histogram (LBPH) classification method
[6]. LBPH is a feature descriptor for the texture of images.
A basic local binary pattern (LBP) operator assigns a label
to every pixel of an image by thresholding the 3 × 3 pixel
neighbourhood, based on a lower or higher value than the
centre pixel. A special kind of LBP operator called extended
LBP (ELBP) is used for the fall-mechanism. Instead of being
limited to directly adjacent neighbours, the neighbourhood is
extended to include interpolated pixels, based on a circular
mask, that capture fine texture. This operator uses spatially
enhanced histogram matching that enables partial matching
and automatic pixel normalization on a pixel level, circular
neighbourhood level and image level. This results in the
distinct advantage of improved illumination, scale and rotation
invariance compared with other methods [16]. This gives a
confidence score that can determine various attributes of an
image. Training the spatially enhanced histogram model has
a very low time complexity. Furthermore, the training time
is independent of the image resolution and it produces a
small model size. Given m circular neighbourhoods, their
corresponding spatially enhanced histograms are determined,
with a size of m × n, where n is the length of a single
histogram.



C. Feature Selection

The following feature selection algorithm, proven in previ-
ous work [6], reduces the differences among multiple same-
class data while improving the discrimination among different
classes of data.

The quality of the input image plays an important role
in the performance of the feature extraction and matching
algorithm [17]. A bandpass filter can be used to increase the
amplitude of the mean component of the image. This has the
effect of increasing the dominant spectral components while
attenuating the weak components.

The Laplacian of Gaussian (LOG) filter can remove un-
wanted features on the high frequency spectrum before en-
hancing the remaining features, effectively increasing the
mean component. However, a side effect can occur when
applying the filter to badly aligned images. The increased
feature discrimination of LOG further highlights the differ-
ence among multiple samples, leading to bad training and
testing sets and consequently a lower recognition accuracy.
The image registration procedure in Subsection III-B is thus
imperative to the success of an image-based feature-fusion
biometric system.

Another problem is achieving consistent lighting. In [6], a
modified circular local binary pattern (ELBP) texture descrip-
tor is shown to achieve superior performance over the standard
pixel normalization and histogram equalization methods. The
LOG filter is thus combined with modified ELBP for a highly
discriminative and robust feature selection algorithm.

D. Dynamically Weighted Fusion

This subsection explains the dynamic weighting process
used for context switching between various combinations of
processed modalities. The LBPH confidence score used in
Subsection III-B is employed for gauging the modalities to be
used in the dynamic weighting process. The main advantage
of this approach is the reliable elimination of unrecognizable
samples – effecting class separation and accuracy during the
classification process after modality fusion.

1) If the quality of a test image of any modality is below
the threshold determined by the LBPH confidence score,
it is excluded from the fusion and classification process.

2) The remaining modalities are ranked from the highest
to lowest LBPH confidence score.

3) Application defined thresholds are applied depending on
the rank of the modality. As the number of modalities
decrease, the confidence score required for passing
increases. In other words, if only one modality remains,
the highest confidence score is required for it to pass
the test.

4) The remaining modalities are fused using column-wise
feature-fusion concatenation. This stitches horizontal
pixels in the image space of each modality.

Fig. 1. Feature-fusion image selected by dynamic weighting algorithm.

E. Feature Transformation and Eigen Classification

Image classification algorithms aim to express the most
relevant image properties. Feature transformation is used to
express a feature vector in an alternate space to improve
discrimination. This often allows for a reduction in dimen-
sionality and intra-class variation – resulting in near-identical
relevant information across multiple samples. The following
Eigen classification method is applied to the dynamically
weighted feature-fusion image illustrated in Fig. 1 – in this
example only the face and the fingerprint are selected.

Eigen classification can be used to maximize inter-class
separation to discriminate effectively between different in-
dividuals. The Eigen classifier uses Principal Component
Analysis to represent statistically key features that define a
given feature set. An efficient model can be constructed from
principal components, retaining key features of samples in
one class. The distances among Eigenvalues are compared
between the trained model and the model to be tested during
matching.

Given N sample images x, the total scatter matrix is
defined as [18]:

St =

N∑
k=1

(xk − µ)(xk − µ)T (1)

where µ ∈ Rn is the mean image obtained from the
samples.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

The impostor samples were included in the experiments to
comprehensively test the proposed methodology against false
recognition.

The receiver operating characteristic (ROC) curve in Fig.
2 shows that the face significantly outperforms the finger-
print and palmprint using one training sample. The face and
fingerprint multi-modal system achieves the best bi-modal
recognition accuracy. The tri-modal system achieves a slight
improvement over the best bi-modal system. The dynamically
weighted multi-modal biometric system significantly outper-
forms all of the systems with a 93.75% genuine acceptance
rate (GAR) at 1% false acceptance rate (FAR).

Fig. 3 illustrates the same comparison as the previous
graph, but with an extra training sample. The GAR for



Fig. 2. Comparison of uni-modal, multi-modal and weighted systems using
one training sample.

Fig. 3. Comparison of uni-modal, multi-modal and weighted systems using
two training samples.

the face drops significantly, but is still higher than that for
the palmprint. Upon manual inspection it was revealed that
face samples four and five across all individuals were often
falsely recognized. This was attributed to the severity of the
occlusions caused by the props on many faces. The single
fingerprint and the face and palm bi-modal system achieve
similar accuracies. The weighted system’s GAR improves by
3.75%.

The observed face accuracy drop is the most pronounced
in Fig. 4, using three training samples. The single fingerprint
surpasses the face and palmprint due to the poor performance
of the face. The palmprint also improves significantly on its
own. The remaining bi- and tri-modal systems all improve
and achieve very similar accuracies. The weighted system
clearly outperforms all other systems with 99.25% GAR and
1% FAR.

It is clear based on the three graphs that the weighted
system improves the human identification accuracy by intelli-

Fig. 4. Comparison of uni-modal, multi-modal and weighted systems using
three training samples.

gently selecting the weight of one or more biometric modal-
ities. This shows great promise for solving the universality
problem and improving human identification in general.

V. CONCLUSION AND FUTURE WORK

Security applications that are automatic or unsupervised
in the real-world are still threatened by the continuous im-
provement in sensor penetration methods. Improving the se-
curity using the proposed dynamically weighted multi-modal
biometric system effectively mitigates the pervasiveness of
sensor data on networks in access control. Regardless of
the application, user experience and security is significantly
improved. Moreover, the proposed system provides a solution
to the universality problem posed by many external image-
based biometric modalities. A comparison was performed on
uni-, bi- and tri-modal combinations of the face, fingerprint
and palmprint. The popular PolyU palmprint dataset was first
tested, resulting in perfect accuracy. The challenging IITD
dataset was thus used for the experimental analysis. The
systems in the comparison made use of a new uni-modal and
multi-modal biometric algorithm designed based on a novel
framework in previous work. The comparison was extended
by including the novel dynamically weighted multi-modal
biometric system proposed in this paper. The hard to identify
samples in the face dataset showed the importance of the
dynamic weighting of modalities. The challenging palmprint
dataset further emphasized its importance. The fingerprint uni-
modal system and face and fingerprint bi-modal system were
the best combinations in their respective classes. The proposed
weighted system significantly outperformed the rest of the
systems with a 99.25% GAR and 1% FAR.

In future, more combinations of image-based biometric
modalities will be investigated with additional experimen-
tation. Live blood vessels can be detected from a distance
for all external image-based modalities. This can be used in
combination with the proposed system as an extra security
mechanism in applications that require maximum security.
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