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Abstract—Consider a single camera mounted on the inside of 

a vehicle's windscreen used for detecting potholes and other 

obstacles on the road surface. This paper outlines three 

approaches to the depth estimation problem of determining the 

distance to these obstacles in the range of 5 m to 30 m. We 

provide an empirical evaluation of the accuracy of these 

approaches under various conditions, and make 

recommendations for when each approach is most suitable. The 

approaches are based on the pinhole camera model: the simplest 

approach is based on the geometry of similar triangles, another 

employs the cross-ratio of a set of collinear points, and the final 

approach relies on calibration of the camera matrix. We 

recommend the use of the cross ratio approach for a fixed 

camera setup and depth estimation almost directly ahead, and an 

approach using similar triangles when predicting distances at 

wide angles or adjusting the camera height may be necessary. 

Keywords—depth estimation; monocular vision; projective 

geometry; cross ratio 

I. INTRODUCTION  

Depth estimation is not a new problem and many 
approaches have been developed for this task. These 
techniques employ various assumptions, so the appropriate 
depth estimation technique depends on the application domain. 
Major factors determining the applicability of an approach for 
a domain are the financial and computational cost of 
implementing it. This paper considers the problem of rapidly 
determining the distance from a vehicle to a pothole by depth 
estimation in high-resolution images. These images are 
generated by a windshield-mounted camera in a vehicle 
travelling at roughly 40 km/h - an example is given in Figure 1. 
Ideally, the solution should be suitable for deployment with the 
camera for real-time depth estimation of potholes and other 
obstacles. 

In previous research, the authors developed a classifier for 
detecting potholes in such images [1]. As none existed, the 
authors have compiled and made publicly available a set of 
annotated images with potholes taken from a driver’s vantage 
point [2]. Detecting distant potholes is considerably more 
challenging than detecting nearby potholes. The initial 
motivation for developing the depth estimation techniques 
described here was attempting to gain a better understanding of 
this aspect: by determining the distance of each pothole in set 
of images, it is possible to refine the results based on these 
distances. This allows one to quantify the performance 
degradation of the classifier as the depth increases, and to 

verify whether the degradation is monotone. In addition, this 
depth information can be used to construct classifiers for 
potholes at different ranges - it may be possible to combine 
these to improve overall pothole detection performance. 

For the work presented in this paper, the following factors 
were relevant. Potholes occur in countries and states that are 
subject to heavy rainfall, poor drainage, harsh winter weather 
and frequent freezing and thawing of road surfaces. However, 
in less affluent countries, potholes are usually not repaired in a 
timely fashion and therefore it was important to identify a cost-
effective approach for depth estimation. This limitation 
prevents the use of multiple cameras or expensive laser 
mapping technology. Therefore, stereo vision techniques fall 
outside the scope of this paper. Additionally, the lack of laser 
mapping for establishing ground truth depths for objects 
necessitated the development of a low-cost but accurate 
approach to validate our depth estimation results. Finally, it 
was important to find a solution that could potentially be used 
in a real-time environment allowing a full real-time pothole 
detection and depth estimation solution. Approaches that 
enable real-time depth estimation within a road are also 
applicable to other vehicle automation tasks, such as 
incorporating rear-end collision avoidance into cruise control 
applications. 

A. Contribution 

Although there are existing approaches that perform 
distance estimation with monocular vision for various 
applications, there is limited work done to compare the 
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Fig. 1. Example of potholes in a road 



accuracy of the approaches. This is especially the case for the 
specific application considered in this paper, namely estimating 
the distance of objects in the road. The research contribution of 
this paper is the empirical comparison of the accuracy of three 
fundamental computer vision approaches to estimating the 
distance of potholes using monocular vision. Note that by the 
nature of the experiments, the results apply equally to other 
tasks involving depth estimation of markings or objects on a 
ground plane, where the relevant camera setup conditions are 
specified, and the distances involved are comparable (i.e. 5-
30m). 

II. RELATED WORK 

The depth estimation domain presented in this paper is 
novel, but depth estimation itself is widely applicable in 
practice. In robotics, it is crucial for a robot to determine its 
distance from obstacles in its path [2]. Another application 
pertains to forensics where only a single stationary camera is 
available and it is necessary to determine at what distance a 
person of interest was at a particular time or the height of a 
particular person in the image is required [3]. Motion capture 
has also become part of many computer games and films, and 
by using triangulation it is possible to determine the distance of 
actors and their limbs relative to other actors [4].  

Depth estimation approaches are generally either active or 
passive. Active techniques generally analyse reflections of 
sound or light waves emitted into the scene to estimate depth 
[5]. An example of this is given in [2] where a laser light and 
camera are combined in such a manner that the camera can 
detect the laser light reflecting from obstacles. The camera was 
used to capture images at regular intervals and determine the 
centre point of the laser light pointing at an obstacle. The 
perceived shift of the laser light relative to the movement of the 
robot was then used to estimate depth with good accuracy. 
However, active approaches rely on the availability of 
additional equipment, which we aim to avoid.  

Passive techniques perform depth estimation by analysing 
one or more captured images of a scene. Techniques have been 
developed for estimating depth from video feeds, estimating 
positional information from multiple images of the same scene 
(most commonly for stereo vision applications), and monocular 

depth estimation, where only a single image is used for depth 
estimation. The classical approach in all these cases involve 
trigonometric and (typically projective) geometric 
computations, incorporating whatever additional information is 
available from the particular domain. For the task we consider, 
only one camera is used, and using video feeds would only be 
feasible if an object tracking system were available for the 
potholes. Thus, our focus is on monocular vision approaches. 

Two papers are of particular interest with respect to depth 
estimation of objects in a road using monocular techniques. In 
[6], a single camera was used to estimate the depth of a vehicle 
on an (assumed) planar road surface. The approach relies on 
the assumption that the camera’s optical axis is parallel to the 
road's surface and edges. A geometric approach is applied that 
combines the pinhole model and ad-hoc error corrections 
presumably obtained from empirical measurements. An 
accuracy of 96% was reported over a distance of 70 m, but the 
methodology for obtaining the corrections is not presented, so 
that it is unclear what must be done to obtain this accuracy. 

In [7], monocular depth estimation of vehicles on the road 
was also tackled using a pinhole camera model. In particular, 
the depth of the point where the vehicle meets the road was 
estimated. As in [6,8], a planar road surface and a parallel 
installation of the camera’s optical axis to the road surface and 
edges are assumed. The work also included a method for 
determining the range rate that was based on scale change.  

As an alternative to the classical geometry-based depth 
estimation techniques discussed above, it is worth noting that 
work has also been done on using probabilistic modelling of 
scenes and the structure of images for extracting depth 
estimation from single images. The most notable approaches in 
this direction make use of Markov random fields; e.g. [8,9,10]. 
These techniques are very versatile, generating range images 
for scenes appropriate to the situations they model without any 
major assumptions about the camera setup. These techniques 
are less appropriate for our use for two reasons. First, a suitable 
probabilistic model of a road and its contents is needed to 
apply the model; second, even with a suitable model, the 
accuracy of these is generally not as accurate as the geometric 
techniques discussed previously, so the latter should generally 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Illustration of (a) the pinhole camera model and (b) the corresponding camera plane and image co-ordinate systems. I2 represents the image plane, and the 

focal length f is the distance between the pinhole and the image length. 
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be applied when the relevant information for applying the 
geometric techniques is not available. 

III. TECHNICAL BACKGROUND 

This section discusses aspects of the pinhole camera model 
and camera calibration process relevant to the rest of our work.  

A. Pinhole camera model  

 For the  approaches used in this paper, the camera is 

modelled using the pinhole camera model [11] as illustrated in 

Figure 2.a, and only rays of light coming through the pinhole, 

are considered. The ray of light leaving the top of the tree in 

the figure projects onto a pixel on the top of the image plane I2 

and a ray of light from the bottom of the tree projects onto a 

pixel at the bottom of the image plane I2. Similarly, other rays 

of light between these two rays project onto the image plane, 

and if the camera is aligned to the tree such that the middle of 

the lens is aligned with and pointing directly toward the 

middle of the tree, the ray of light from the middle of the tree 

will travel through the pinhole parallel to the ground. The 

distance between the image plane and the pinhole is known as 

the focal length f. The plane I1 falls precisely on the internal 

CMOS sensor of the camera, and detects an inverted (upside-

down) smaller image of a tree in this case. I2 is symmetric to I1 

about the pinhole, so that the camera captures the image on the 

image plane by inverting (in software) the image captured on 

the CMOS sensor at I1.  

A different view of the image plane is given in Figure 2.b, 
which clearly indicates the relationship between the pixel 
coordinates (xpixel and ypixel) and the x- and y-axes of a camera 
coordinates (xc and yc). The z-axis of this system is then 
orthogonal to the image, and the z-coordinate of an object in 
this coordinate system thus represents its depth in the scene. 
Thus, estimating depth using this method involves directly 
estimating the z-coordinate in the camera world corresponding 
to a pixel location.  

Since the origin in the camera coordinate system is at the 
pinhole, if a depth of 5 meters is calculated, it will refer to a 
distance of 5 meters in front of the camera. This is suited for 
the application, where the camera is mounted inside a vehicle 
and the camera reference point needs to be dynamic in relation 
to the movement of the vehicle on the road.  

In general, the mapping from coordinates used for 
specifying a location in the real world (called world 
coordinates) to camera coordinates is a projective 
transformation that can be described by a projection matrix P. 
P depends on the camera's intrinsic and extrinsic properties as 
Equation 1. Our assumptions about the camera installation (see 
Section IV) simplify the situation by fixing the extrinsic 
parameters: the assumptions set the rotation matrix R to the     
3 x 3 identity matrix and the translation vector t to the zero 
vector, i.e. we assume the camera and world coordinate 
systems are identical. The intrinsic parameters of the camera 
are represented by the calibration matrix K - these depend on 
the camera and its configuration.  The next section discusses 
camera calibration, a process for estimating the calibration 
matrix. 

 𝑷 = 𝑲[𝑹|𝒕] 

B. Camera calibration 

 Various forms of the calibration matrix can be found in 

[11]. One of the most common representations is given in 

Equation 2, where fx and fy represent the focal point in the x 

and y-axis respectively, and the centre point of the CMOS 

sensor of the camera (also referred to as the principal point) is 

represented by ux and uy.  

 𝑲 =  [
𝑓𝑥 0 𝑢𝑥

0 𝑓𝑦 𝑢𝑦

0 0 1

] 

 Setting K0,1 = 0 indicates that the skew of the sensor is 
presumed to be zero i.e. the image is not distorted in a diagonal 
manner. In [9] the camera is not calibrated and is chosen as  
(ux, uy) = (W/2, H/2) where W represents the width of the 
image in pixels and H represents its height. This is usually an 
acceptable assumption but the origin can vary slightly 
depending on the manufacturing quality of the camera. For the 
purposes of this paper, the camera was calibrated, which yields 
the most accurate calibration matrix for the camera when 
needed.  

The camera was calibrated with the Camera Calibration 
Toolbox for Matlab [12], using a board with 100 mm x        
100 mm squares to enable more accurate calibration at the 
larger distances relevant to this task. The (estimated) board 
positions used for calibration are displayed in Figure 3. Note 
that the plane described by y = 0 in this space is not the road 

 
 

Fig. 4. Fisheye distortion before (left) and after (right) correction. 

 
 

 

Fig. 3 Approximate board locations used for camera calibration. The camera 

is at the origin. 



surface itself, because the camera (which is at the origin) is 
mounted within a vehicle. 

Since cameras in practice make use of lenses that adjust the 
direction of light travel nonuniformly, the pinhole camera 
model is not entire accurate. It is thus generally desirable to 
remove the fisheye effect (or other perspective distortion) from 
images in which depth needs to be estimated, in order to 
maximize the accuracy of the depth estimation results. 

In order to obtain accurate distortion parameters, it is 
necessary to place the board at various points near the edges of 
the field of view of the camera, where the fisheye effect is most 
noticeable. The left hand image in Figure 4 illustrates the 
fisheye effect of the camera; after calibration the distortion 
could be mostly eliminated, as seen in the right hand image in 
Figure 4. 

It can be seen that the fisheye effect has not been 
eliminated; however the distortion has hopefully been reduced 
enough for its remaining effects to be negligible in future 
calculations. We also quantified the effects of not performing 
fisheye correction before depth estimation; see Section IV.B. 

To measure the fisheye distortion in the horizontal plane, 
one of the horizontal lines of the venue where the images were 
taken was used. The line is indicated by the green crosses in 
Figure 4. This line is a straight line, however, due to the 
fisheye distortion introduced in the frame, it can be observed 
that it is not. The expected straight line was used as a reference 
and from its centre point, the deviation from this line was 
measured and a relative percentage error was calculated and is 
indicated in Figure 5. As can be seen, the corrected fisheye 
image’s graph indicates an error of less than 5% at the edge of 
the image. 

IV. METHODOLOGY 

The approaches considered in this paper make use of two 
assumptions that simplify depth estimation. These assumptions 
are based on the fact that the camera will be mounted in a 
vehicle and will be facing the road when relevant images are 
taken. The first assumption is that the road surface is presumed 
to be flat relative to the vehicle. This should generally be the 
case below the vehicle, but the assumption may be incorrect for 

the road section ahead of the vehicle if the road slope changes. 
In this case, the depth estimation techniques will provide less 
accurate results. The second important assumption is that the 
mounted camera’s lens is directly facing the road and that it 
faces the road in such a manner that a light ray through the 
centre point of the camera lens is parallel to the road surface 
and edges, thereby implying that there is zero yaw, pitch and 
roll when the camera faces the road. This is the assumption 
simplifying the form of the projection matrix by fixing the 
extrinsic parameters to convenient values, described in   
Section III.B. Note that there are methods for determining the 
ground plane, such as the work done in [13], if these 
assumptions are invalid. These techniques fall beyond the 
scope of this work, which focuses on contrasting the accuracy 
of depth estimation techniques. 

Section IV.A describes a simple approach based on the 
geometry of similar triangles. An approach employing the 
cross ratio of collinear points is then described in Section IV.B. 
Section IV.C finally describes a versatile depth estimation 
which makes use of camera calibration, and only requires one 
other reference point in the image. This approach essentially 
determines the location of an object in the ground plane by 
solving equations involving the projection matrix P. We refer 
to this approach as the pinhole (camera) model approach. The 
low-cost experimental setup used to compare the accuracy of 
these methods is given in Section IV.D. 

A. Similar triangles 

 A common geometric approach to estimating depth of an 
object directly ahead of the camera relies on the geometry of 
similar triangles [14] and can be deduced from a figure similar 
to Figure 2.a. The equation one arrives at is given in Equation 
3 where z is the estimated depth in the image if the focal length 
(f), height of the camera (H) and y pixel value (y) at the point 
on the image plane are known. 

 𝑧 =  
𝑓𝐻

𝑦
  

We can employ this formula to estimate the depth of an 
object on the road in our domain once we have the focal length 
of the camera: since the height of the camera is known, this 
formula implicitly maps pixel heights to estimated distances. 

C

a cd b

a' 

b' 

c' 

d' 

I1

I2

Fig. 6. The mapping from I1 to I2 projecting the points a, b, c and d to a', b', c' 
and d' respectively is an homography through C, and the cross ratio of sets of 
collinear points is preserved by homographies.  
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We consider two approaches to obtaining the focal length in 
this work. 

B. Cross ratio formula 

The second approach to depth estimation that we consider 
makes use of reference pixels corresponding to known 
distances within the image. The approach, presented in [3], 
employs the cross ratio projective transformation defined 
Equation 4 [13]. Here, points a-d refer to homogenous points in 
a one-dimensional plane ℙ1 , so that the right hand side is a 
quotient of products of matrix determinants. 

 𝐶𝑟𝑜𝑠𝑠(𝑎, 𝑏, 𝑐, 𝑑) =  
|𝑎 𝑏||𝑐 𝑑|

|𝑎 𝑐||𝑏 𝑑|
  

Consider four rays in a plane passing through a common 
point C. The projection of these rays on any other plane yields 
four collinear points, and the cross ratio of these points is 
invariant to the choice of the plane [15]. The use of this 
technique for our domain is illustrated in Figure 6, where C is 
the pinhole from the pinhole camera model. In this figure, the 
one-dimensional data on line l1 represent depths in the road 
directly ahead of the camera and the one-dimensional data on 
line l2 are the y-values of the corresponding pixels in the 
image, with x-coordinate equal to that of the principal point.  
We apply this technique by determining pixel locations for a 
number of known distances in the road in advance, and then 
selecting three equally-spaced distance for use as (a-c) together 
with an unknown distance d corresponding to a particular pixel 
height y. It is not required that the reference points be equally 
spaced, but it simplifies the exposition below. Thus the cross 
ratio for the data in the one dimensional road plane can be 
expressed as cross(a,b,c,d) = cross(0, L, 2L, d) and similarly 
that for the one-dimensional pixel y-values can be expressed as 
cross(a',b',c',d') = cross(y0, y1, y2, y), where y0, y1, and y2 have 
been determined in advance. Equating these cross ratios to 
determine d yields Equation 5. Note that this approach 
implicitly measures depths relative to the depth of reference 
point a.  

 𝑑 =
(𝑦0−𝑦1)(𝑦2−𝑦)−(𝑦0−𝑦2)(𝑦1−𝑦)

(𝑦0−𝑦1)(𝑦2−𝑦)−
1

2
(𝑦0−𝑦2)(𝑦1−𝑦)

𝐿  

 For our experiments, we determined pixel values for 
reference points at 5 m intervals (from 5 m to 30 m), so we 
could always apply Equation 5 with L = 5. We selected our 
points a-c to include the reference points directly above and 
below the pixel of interest: for depths below 15 m, the 
reference points are 5 m, 10 m and 15 m. Between 15 m and   
20 m, the reference points are 15 m, 20 m and 25 m. Lastly, for 
depths between 20 m and 30 m, the three reference points are 
20 m, 25 m and 30 m.  

 The approaches described above (using similar triangles or 
the cross ratio) can only predict distances for points directly 
ahead of the camera. In order to perform depth estimation for 
other pixels, we simply predict the depth using the y-

coordinate of the pixel. If the camera setup is correct and the 
perspective distortion has been eliminated, this will give the 
correct depth - essentially, we predict the depth of a point in 
the road next to the pothole. 

C. Pinhole camera model formula 

The pinhole camera model specifies that the projection of a 
ray through the pinhole onto the image plane is determined by 
the projection matrix P according to Equation 6, where Xw 
specifies the homogeneous world coordinates of the ray and the 
pixel coordinates are denoted by x.  

 𝒙 = 𝑷𝑿𝒘 

Using the pseudoinverse P* of P (note that P is not square), 
we can determine the homogeneous coordinates of the ray 
passing through a pixel of interest and the pinhole by 

 𝑿𝒘  = 𝑷∗𝒙 

To determine the world coordinates corresponding to the 
pixel in question, it is necessary to determine the point where 
the ray travelling through this pixel and the plane of the road 
intersects. After computing Xw, it must thus be dehomogenized 
to yield the desired world coordinates by finding a suitable 
scalar factor 𝜆  in Equation 8. 

 𝑿𝒘  = 𝜆𝑷∗𝒙 𝑤ℎ𝑒𝑟𝑒 𝜆 𝜖ℝ > 0 

The derivation to determine 𝜆  uses the normal form 
representation of a plane (Equation 9) which characterizes the 
points on a plane in terms of a reference point V in the plane 
and the normal n of the plane. 

 𝒏 ∙ (𝑃1 − 𝑉) = 0 

The normal of the road plane is always the same in our 
application due to our assumption about the camera setup, and 
it can be determined by placing the calibration board flat on the 
road surface, and recording the translation vector and rotation 
matrix describing the position and orientation of the board. The 
location we place the calibration board at serves as our 
reference point V (Note that the thickness of the calibration 
board must be taken into account). 

Next, setting P1 = Xw in Equation 9 and solving for 𝜆 
yields: 

 𝜆 =
𝒏∙𝑉

𝒏∙𝑷∗𝒙
    

Finally, using this value of 𝜆  in Equation 8 yields the 
estimated world coordinates of the pothole in the road. 

 𝑿𝒘 =
𝒏∙𝑉

𝒏∙𝑷∗𝒙
𝑷∗𝒙    



An advantage of this method is that it explicitly provides 
the world coordinates corresponding to a pixel and therefore 
contains information of the relative position of the pothole for 
all three axes, not just the depth. 

D. Experimental setup 

To determine the true depth within the images, a measuring 
tape was placed on a flat surface in front of the camera such 
that the tape appears to run vertically in the camera image. 
Measurements were taken at 1 m intervals between 5 m and   
30 m. At each of the one meter intervals between 5 m and 30 m 
the calibration board was held upright and flush with the 
surface and photographed. These results are recorded to 
demonstrate how accurate the pinhole model could be if more 
scale and orientation information were available at the point of 
interest.  This process was performed using the same setup 
used for the camera calibration. In order to further quantify the 
accuracy of the techniques, an additional set of measurements 
were taken parallel to these, but at a distance of 4.93 m to the 
left of the camera.  The camera was set up again, but not 
recalibrated, for this process. 

In order to minimize alignment problem between the 
camera mounted within the vehicle and the centre point of the 
scene, the vehicle setup was eliminated in the final 
measurement setup. Consequently, the camera was placed on a 
tripod at the exact height it would have been in the vehicle. 

The images used for this study were captured by a GoPro 
Hero 3+ camera with the resolution set to 3680 x 2760. The 
high resolution is necessary for the pothole detection system 
presented in [1]  which uses the same images. 

In a real-world scenario, a calibration procedure would be 
required to mount the camera to the vehicle to ensure the most 
accurate results. If the pothole detector becomes a commercial 
product, the manufacturer could develop a calibration 
device/procedure that would ensure the camera is mounted 
correctly. 

V. RESULTS 

The principal findings of the study are shown in Figure 7.  
This figure displays the error percentage in predicted distance 
at various distances from the camera, when the object is 
directly ahead of the camera.  The values are plotted for each 
technique.  For the similar triangles approach, results are given 
using the focal length estimated from camera calibration, as 
well as that obtained by averaging the focal length implied by 
the reference points used by the cross ratio approach.  The 
pinhole model approach still has good performance for short 
distance, but the error percentage worsens approximately 
linearly as the distance increases, resulting in very poor 
performance for large distances.  The similar triangles 
approach using the focal length from the camera calibration 
process also fares poorly over the entire range of distance, 
while the version using the averaged implied focal lengths 
performed much better. The disparity in these results is 
surprising, since other aspects (including the “Upright board” 
measurements discussed below) indicated that the values in the 
calibration matrix were fairly accurate. The cross ratio 
approach performed best among the approaches (with an error 
of less that 2% across the entire range), performing even better 
than the pinhole model approach augmented with additional 
information from the upright board used during the 
measurement process.  (These results, labelled "Upright board" 
in the figure, are a dramatic improvement over the baseline 
performance of the pinhole model.)  Omitting the fisheye 
removal step had a negligible effect on all these curves. 

These results indicate that for the problem at hand, where 
we are estimating distances between 5-30 m directly ahead of 
us, and have reference pixels of known distance available, the 
cross ratio formula is the technique of choice.  However, 
objects may not be directly ahead of the camera, which the 
cross ratio and similar triangles approach expect - our proposal 
of only considering the y-coordinate may introduce too much 
inaccuracy.  Furthermore, in this situation, if camera 
calibration is not performed, fisheye removal may not be 
possible.  Finally, one may not have as many reference points 
in practice as used above.  We consider the effect of these 
limitations next. 

 
Fig. 7. Error percentages of the approaches considered at various distances directly ahead of the camera. A negative (positive) percentage error indicates 

underestimation (overestimation) of the depth. 
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Figure 9 provides results analogous to those in Figure 7, 
except that these errors are those obtained for the 
measurements 4.93 m to the left of the camera.  At close 
distances, this corresponds to a wide angle, so the fisheye 
effect is much more noticeable for the location of the 
measurement on the image.  Thus the figure also includes 
results when fisheye correction is not performed, since the 
difference is no longer negligible.  Finally, at these angles, it is 
not always possible to reliably estimate the distance using the 
information from the upright board due to limitations in the 
camera calibration toolbox, so the corresponding curves for 
that method are omitted. 

It is not surprising that the results are considerably worse in 
this scenario.  Consider first the results where fisheye 
correction has been performed.  Once again, the estimated 
distance for the pinhole model increase too slowly, resulting in 
a linear decrease on the graph; however, since the model 
initially overestimates the distance, there is a short window 
where it performs well.  The cross ratio approach begins 
slightly worse than the pinhole model at 5 m, but becomes 

consistently more accurate as the distance increases, with less 
than 5% error for all distances beyond 13 m. Again, the 
similarity triangles approach using the calibrated focal length 
performed dismally. However, when this approach used the 
average implied focal lengths, it performed considerably better 
than the other approaches for shorter distances, and is only 
slightly worse than the cross ratio technique beyond 15 m. 

Failure to perform fisheye removal in this setting has a 
notable effect, leading to increases in the estimated distances.  
The difference in accuracy resulting from the failure to perform 
fisheye correction reduces as the distance increases (from 
about 20% at 5 m, to a negligible effect at 20 m).  This is 
because the angle from vertical decreases and the pixels under 
consideration thus move closer to the centre of the image, 
where the fisheye effect is weaker.  These results indicate that 
if one’s system should be able to estimate distances to objects 
at wide angles, it may be preferable to use the similar triangles 
approach (with implied average focal length) rather than the 
cross ratio approach, since the loss of accuracy directly ahead 
and at further distances may be countered by improved 
performance at wide angles. 

In order to investigate the effect of the number of reference 
points used as anchors for the cross-ratio formula, Figure 8 
compares the cross ratio results in Figure 7 to the performance 
of the cross ratio approach when only three reference points 
(the minimum needed for the cross ratio approach) were used.  
In particular, we used a 10 m interval, with reference points at 
5 m, 15 m, and 25 m.  Since the error of the techniques at a 
reference point for this technique is zero, there is more freedom 
for the technique to introduce error with the wider-spaced 
reference points, and we do see a reduction in performance.  
However, the performance is still much better than the pinhole 
model, and comparable to the best other approaches.  (Note 
that we would also expect the similar triangles approach using 
implied focal lengths to worsen if only given three reference 
points.) 

 
Fig. 9. Error percentages of the approaches considered for measurements 4.93 m to the left of the camera. Solid lines indicate error with fisheye correction 

performed, dotted lines indicate error with fisheye correction omitted. A negative (positive) percentage error indicates underestimation (overestimation) of 
the depth. 
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Fig. 8. Cross ratio comparison between 5 m intervals and 10 m intervals 
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VI. CONCLUSION 

The work presented in this paper assessed three different 
approaches to determining the depth estimation problem of 
determining the distance to an object, such as a pothole on a 
road. The pinhole model requires camera calibration to be 
performed, while the cross ratio approach requires reference 
pixels corresponding to known distances to be determined.  
The approach using similar triangles requires the focal length 
of the camera to be known.  This information might be 
available for some camera models, but might need to be 
calculated (either as part of a camera calibration process, or 
from reference pixels as per the cross ratio approach).  
Furthermore fisheye distortion can impact distance estimation, 
so it is desirable to remove it if possible; however, this also 
requires camera calibration. 

We found that for depth estimation directly ahead in the 
range 5-30 m, the fisheye correction has negligible effect, and 
the techniques based on reference points were far superior to 
the pinhole model approach, with the cross ratio approach 
performing the best directly ahead of the camera.  At wide 
angles (and thus short distances) in this range, the fisheye 
effect is stronger and the similar triangles approach using 
implied average focal lengths performs better.  If depth 
estimation in these cases are needed, we recommend 
performing camera calibration to remove the fisheye effect, 
and considering a hybrid approach, using the cross ratio 
approach to get good accuracy directly ahead and at larger 
distances, and using the similar triangles approach for depth 
estimates at wider angles. 

A limitation of this study is that the results for the pinhole 
model depend on the calibration matrix, as does the similar 
triangles approach using its focal length.  While care was taken 
to calibrate the camera accurately, there are always errors in 
such a process, and it may be that recalibration yields different 
results.  While we believe our results qualitatively capture the 
nature of the problem with the pinhole model approach for this 
task - the distance estimation error percentage increases 
linearly to unacceptable levels at larger distances - it would be 
worthwhile to verify this, 

Finally, we note that if the camera height is changed (for 
example, by deploying the camera in a different vehicle), the 
pinhole model and similar triangle approaches can be 
employed directly once the change in height has been 
established.  On the other hand, the cross ratio approach 
requires that the location of the reference pixels be re-
established.  This is an argument in favour of using the similar 
triangles approach throughout. 
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