
S5.2 

112 

 

Ranking seasonal rainfall forecast skill of emerging and developing economies 

 

Willem A Landman1,2, Anthony G Barnston3 and Coleen Vogel4 

 

1Council for Scientific and Industrial Research, Natural Resources and the Environment, Pretoria, South Africa 

2Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa 

3International Research Institute for Climate and Society, The Earth Institute of Columbia University, New York, USA 

4Global Change and Sustainability Research Institute, University of the Witwatersrand, Johannesburg, South Africa  

 

Abstract 

Some of the biggest emerging markets economies include countries in South America, Asia and Africa. In the 

global south, political and developmental similarities (e.g. climate variability occurring in conjunction with 

marked developmental challenges) offer opportunities for comparative research and thereby possible societal 

benefits (e.g. enhanced disaster risk reduction). In fact, countries or geographical regions of the world 

significantly affected by climate extremes may consider collaboration on issues such as understanding and 

modelling of the climate system, especially if there is a common dominant and somewhat predictable climate 

mode such as the El Niño-Southern Oscillation (ENSO) affecting the climate variability over these regions. 

Notwithstanding the value of enhanced understanding and preparedness for ENSO, better predictions are not 

enough to reduce the risks associated with such events. The socio-economic and political context in which 

forecasts are located also needs to be understood. Here we present seasonal forecast skill over a large number 

of regions including emerging or developing countries, but also for a small number of developed regions, in 

order to rank their ENSO-related seasonal rainfall predictability in an attempt to cluster regions of similar 

predictability. 
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INTRODUCTION 

The El Niño-Southern Oscillation (ENSO) has long 

been known to have global impact on 

seasonal-to-interannual climate variability (Ropelewski 

and Halpert, 1987, 1989). For example, during most of 

the strongest El Niño events (e.g. 1982/83, 1991/92 and 

2006/07) drought conditions occurred over parts of 

southern Africa, Australia and southern USA, while La 

Niña events caused excessive seasonal flooding over 

these parts (e.g. 1999/2000 and 2010/11). The reliability 

with which most ENSO events can be predicted several 

months before they reach maturity (Stockdale et al., 1998) 

and the skill in predicting seasonal extremes over parts of 

the globe linked to ENSO (e.g. Landman and Beraki, 

2012) may result in effective uptake of seasonal forecasts  

in order to minimize such impacts (Braman et al., 2013). 

Evidence of existing international collaboration, such as 

that of IBSA (India-Brazil-South Africa), has already lead 

to scientific agreements on addressing research and 

modelling questions on oceanography, meteorology and 

the Antarctic. In addition to successful politically-based 

frameworks such as IBSA, collaboration motivated more 

directly by common scientific questions is also warranted, 

especially if such questions can lead to further societal 

improvement and development, including economic 

development.  

The level of uptake of seasonal forecasts and 

applying these forecasts for the benefit of users, 

commercial or otherwise, across regions differs widely. 

For example, in Uruguay (a nation whose economy is 

based upon agriculture) the government is currently 

working with the International Research Institute for 

Climate and Society (IRI) to create one of the most 

sophisticated agricultural information networks in the 

world that can provide reliable seasonal climate forecasts 

for temperature and rainfall patterns up to three months in 

advance. Countries or geographical regions with political 

and socio-economic challenges similar to Uruguay’s may 
benefit from learning about how they have put to use 

seasonal forecasts to improve on their agricultural 

practices and decision making. However, regions where 

seasonal forecasts are not skillful enough may not benefit 

from learning about the Uruguayan experience.  

In South Africa, where it has been suggested that the 

uptake of seasonal forecasts for the region may have 

stagnated notwithstanding proof that forecasts have 

improved (Landman, 2014), may benefit from learning 

from the Uruguayans since southern Africa has, like 

Uruguay, ENSO-forced seasonal predictability and has a 

large agricultural sector sensitive to climatic fluctuations. 

Moreover, climate models applied to South African 

agriculture and rivers have also been successfully applied 

to Uruguayan and Chilean river flows over multiple 

decades (Landman et al., 2014). Such South-South 

collaboration is made in part possible owing to the 

regions’ teleconnections to ENSO and subsequent 
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seasonal predictability. However, there are a number of 

regions similarly linked to ENSO and whose modelling 

and forecast application efforts may also co-benefit 

through multi-national collaboration with southern 

African modellers and social scientists.  

Complex socio-economic and political drivers that 

shape the vulnerability context in which ENSO operates 

also need to be understood when preparing seasonal 

climate forecasts (e.g. Eakin, 2000, Davis, 2002; Lemos 

et al. 2002; ODI, 2011, Ziervogel and Downing, 2004). 

The social and human dimensions require detailed 

attention (as the recent interest in the focus on ‘Climate 
knowledge for action’ and the ‘Global Framework for 

Climate Services’ is planning to address). Several 

investigations on the use and uptake of seasonal forecasts 

in southern Africa have been undertaken and key 

elements can be profiled further.      

This paper attempts to find out where southern Africa 

seasonal rainfall predictability ranks with a good number 

of other countries or regions linked to ENSO so that 

collaboration may be sought and established. 

DATA AND METHOD 

Two data sets are considered: hindcasts from a 

coupled model and a gridded rainfall product against 

which the model hindcasts are verified. The model used 

is the GFDL-CM2.5-FLOR-B01 fully coupled model of 

the North American Multi-model Ensemble (Kirtman et 

al., 2014). Monthly global hindcast data from March 

1980 to the present are available at a 1°x1° 

latitude-longitude resolution for 12 ensemble members 

and for lead-times up to 11 months. We are using only 

1-month lead-time hindcasts. The gridded data is the 

Climatic Research Unit (CRU) TS3.21 (Harris et al., 

2014) from which seasonal total rainfall is derived. Table 

1 shows the regions and their latitude-longitude 

description together with their respective ENSO related 

rainfall seasons used in the analysis.  

Table 1. The regions, their latitude-longitude areas and their 

seasons used in the analysis.      

Region Lat-Long ENSO 

responses 

season 

Central Chile 28°-38°S; 70°-75W° JJAS 

Central SW Asia 34°-44°N; 62°-77°E FMA 

Coastal Equador,Northern Peru 8°S-0°; 79°-82°W JFMA 

Eastern Australia 20°-40°S; 140°-154E° ASOND 

Eastern Equatorial Africa 7°N-7°S; 31°-48°E OND 

Europe 36°-60°N; 10°W-4°E SON 

India 13°-30°N; 70°-88°E JAS 

Indonesia 10°S-10°N; 95°-127°E JASOND 

Nordeste 2°-8°; 34°-45°W MAM 

Northern South America 0°-12°N; 52°-82°W JASOND 

Philippines 5°-20°N; 118°-128°E ONDJF 

Sahel 8°-16°N; 18°W-40°E JAS 

Southeast Asia 10°-20°N; 97°-110°E JJAS 

Southeast China 20°-30°N; 110°-123°E AMJ 

Southeast South America 29°-39°S; 48°-63°W SOND 

South-central, SW Canada 49°-55°N; 88°-132°W DJFM 

Southern Africa 14°-36°S; 11°-41°E NDJFM 

Southern USA 25°-34°N; 75°-120°W NDJFM 

 

Seasonal total precipitation gridded ensemble mean 

hindcasts are interpolated to the nearest CRU gridpoint 

after which the mean and variance biases of the model 

data are corrected with the IRI’s Climate Predictability 
Tool (CPT). There are 31 years of matching model and 

CRU data available from 1981 to 2011 of which the first 

15 years are used to calculate error variances through 

cross-validation. Probabilistic and deterministic model 

hindcasts for year 16 are subsequently obtained by the 

CPT. A new cross-validation is then performed over 16 

years of hindcasts in order to produce probabilistic and 

deterministic hindcasts for year 17. The process is 

continued until 15 years of hindcasts are obtained from 

1997 to 2011. These hindcasts are subsequently verified. 

RESULTS 

The 15-year hindcasts are verified both 

deterministically and probabilistically. For the former 

Spearman’s rank correlations between model and CRU 

data are calculated, and for the latter the model’s 
discrimination and reliability attributes are evaluated. 

Relative operating characteristics (ROC) are used to 

determine discrimination and the least squares weighted 

regression lines of attributes diagrams are used for 

reliability. In fact, the difference between these resolution 

slopes and the slope for perfect reliability is used as a 

measure of reliability at each gridpoint. For both ROC 

and reliability the upper and lower thresholds of the 

hindcast categories are determined from respectively the 

75th and 25th percentile values of the climatological 

record. 

The deterministic verification results are shown in 

Fig. 1. All CRU gridpoints per region are evaluated by 

calculating the 25th, 50th (median) and 75th percentile 

values of the correlations. The results are ranked 

according to the median values for each region and 

shown on the figure in a descending manner. The 

Philippines is ranked highest and southern Africa only 

13th. All three IBSA regions (Southeast South America, 

Nordeste and India) are ranked higher than southern 

Africa. Surprisingly coastal Ecuador and northern Peru 

are ranked lowest, but this result may be a function of the 

model used and so the evaluation of additional models 

may be warranted.  

ROC scores (for the three percentile values 

mentioned above) for the upper quartile (the 

“above-normal” category used here) of Fig. 2 rank 
southern Africa even lower in the 16th position. This 

lower position is partly a consequence of a large number 

of southern African gridpoints associated with very low 

ROC scores (the 25th percentile is near 10) even though 

the 75th percentile ROC scores for this region is ranked 

slightly higher at 15th. However, certain regions of 

southern Africa, such as the Limpopo Province and the 

adjacent areas from neighbouring countries, have been 

found to have much higher skill (Landman et al., 2012). 

For the lower quartile (the “below-normal” category) 
presented in Fig. 3 southern Africa ranks higher than 

before and even competes with the ranks of some of the 

IBSA regions. Take note that for Figs. 1 to 3 that the 

Philippines rank highest.   
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The reliability results of Figs. 4 and 5 are shown in  

an opposite orientation than the previous results, i.e., the 

highest ranked region are associated with the smallest 

distances from perfect reliability. As with the correlations 

and ROC scores, southern Africa ranks in the lower half 

of the regions. Take note that for the way in which 

reliability is portrayed here, some regions that have been 

ranked high before may rank more poorly now (e.g. 

Philippines). We may have to revisit the reliability 

estimates since with the current approach under-confident 

forecasts get penalized more severely than over-confident 

ones since under-confident slopes can go very high, such 

as 3 or 4, while under-confident slopes can only deviate 

from 1 by 1 at the most (unless they have negative slopes, 

which may be possible). 

 

Fig. 1. Percentile values (25th, 50th and 75th) of the 

Spearman’s rank correlation over all gridpoints obtained 

over the 15-year test period from 1997 to 2011. 

 

Fig. 2. As for Fig. 1, but for wet season discrimination (ROC 

for upper quartile). 

DISCUSSION AND CONCLUSION 

We wanted to determine how seasonal rainfall 

predictability over a number of regions compares with 

each other and in particular where southern Africa as an 

emerging economy ranks globally. Since ENSO is a 

strong forcing for climate variability over many parts of 

the globe and found often to be the main source of 

seasonal predictability, only seasons of the regions with 

ENSO responses are considered. For the analysis we used 

the output of a state-of-the-art coupled model of the 

North American Multi-model Ensemble that has been 

corrected for mean and variance biases. Only 15 years of 

verification data are considered from only one model. 

 

Fig. 3. As for Fig. 1, but for dry season discrimination (ROC 

for lower quartile). 

Fig. 4. As for Fig. 1, but for wet season reliability. 

The verification results are presented in terms of 

deterministic predictability and how probabilistic 

forecasts are able to discriminate extreme seasons and 

how reliable these are. In general, predictability varies 

quite substantially across the selected regions, and 

perhaps rather disappointingly, southern Africa ranks 
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poorly against the majority of regions. However, we only 

tested how a single model’s rainfall forecasts performed 
and as is certainly the case with southern Africa, 

statistically downscaling of low-level circulation instead 

can significantly improve skill. Perhaps through 

downscaling, southern African seasonal rainfall 

predictability can be brought up to par with more of these 

regions even if their forecasts are also similarly corrected. 

 

Fig. 5. As for Fig. 1, but for dry season reliability. 

 Based on the results of this work, southern African 

predictability ranks lower with developing regions or 

countries with which formal collaboration already exists 

(e.g. Brazil, India, Uruguay and Chile). Notwithstanding, 

in South Africa in particular, the more than 20 years of 

experience to model and predict seasonal climate 

variations and how such forecast can be applied to 

decision-making (Landman, 2014) may be of interest to 

these regions, in spite of their superior forecast skill. For 

example, South African modelling experience and 

expertise have already benefitted predictability studies 

over the Middle East (Shirvani and Landman, 2015). 

However, southern Africa modellers should also expand 

their network of collaborators to regions with similar 

limits of predictability such as Western Europe but where 

advanced modelling has been taking place over a 

sustained time (e.g., Doblas-Reyes et al., 2013). 

The use and uptake of such forecasts, as indicated 

earlier, is another field of endeavor that requires intensive 

research. The use and co-design of what information may 

be required is an area that would have to be carefully 

considered when trying to use such information. Careful 

collaboration of what users require, how such information 

should be communicated and shared and also used would 

need careful articulation and further research.   
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