Observational studies in South African mines to mitigate seismic risks: a mid-project progress report

R. J. Durrheim1,2,3, H. Ogasawara1,4, M. Nakatani1,5, Y. Yabe1,6, A.M. Milev1,3, A. Cichowicz1,7, H. Kawakata1,6, H. Moriya1,6, M. Naoi1,5, T. Kgarume1,3, O Murakami1,4 and the SATREPS1 Research Group

1. JST-JICA Science and Technology Research Partnership for Sustainable Development (SATREPS)
2. The University of the Witwatersrand, South Africa, Raymond.Durrheim@wits.ac.za
3. CSIR Centre for Mining Innovation, South Africa
4. Ritsumeikan University, Japan
5. Earthquake Research Institute of the University of Tokyo, Japan
6. Tohoku University, Japan
7. Council for Geoscience, South Africa, artur@geoscience.org.za

INTRODUCTION

Seismicity poses a serious risk to workers in deep mines, while natural earthquakes pose a risk to people living close to plate boundaries and even in stable continental regions. A 5-year Japan-SA collaborative project "Observational studies in South African mines to mitigate seismic risks" was launched in 2010 to address these risks, drawing on over a century of South African and Japanese research experience with respect to mining-related and tectonic earthquakes, respectively (Ogasawara et al., 2009; Durrheim, 2010 Durrheim et al., 2010; Utsu, 2003). Here we report on the progress that has been achieved since the last report at a SAGA meeting, Geosynthesis 2011 in Cape Town.

The project has three main aims (see Figure 1):

1. To learn more about earthquake preparation and triggering mechanisms by deploying arrays of sensitive sensors within rock volumes where mining is likely to induce seismic activity.
2. To learn more about earthquake rupture and rockburst damage phenomena by deploying robust ground motion sensors close to potential fault zones and on stope hangingwalls.
3. To upgrade the South African surface national seismic network in the mining districts.

ABSTRACT

Mining-induced earthquakes pose a risk to workers in deep mines, while natural earthquakes pose a risk to people living close to plate boundaries and even in stable continental regions. A 5-year Japan-SA collaborative project "Observational studies in South African mines to mitigate seismic risks" was launched in 2010. Here we report on progress since the report at Geosynthesis 2011 in Cape Town. Acoustic emission sensors, accelerometers, strainmeters, and controlled seismic sources have been installed at sites in Cooke, Moab-Khotsong and Sibanye gold mines to monitor the deformation of the rock mass, the accumulation of damage during the earthquake preparation phase, and dynamic stress as the rupture front propagates. These data are being integrated with measurements of stress, stope closure, stope strong motion, and seismic data recorded by the mine-wide network.

Key words: mine seismology, earthquake precursors, rockbursts

INTRODUCTION

Seismicity poses a serious risk to workers in deep and overstressed mines, such as the gold mines in the Witwatersrand basin of South Africa, as well as inhabitants of earthquake-prone regions such as Japan. A 5-year collaborative project entitled "Observational studies in South African mines to mitigate seismic risks" was launched in 2010 to address these risks, drawing on over a century of South African and Japanese research experience with respect to mining-related and tectonic earthquakes, respectively (Ogasawara et al., 2009; Durrheim, 2010 Durrheim et al., 2010; Utsu, 2003). Here we report on the progress that has been achieved since the last report at a SAGA meeting, Geosynthesis 2011 in Cape Town.

The project has three main aims (see Figure 1):

1. To learn more about earthquake preparation and triggering mechanisms by deploying arrays of sensitive sensors within rock volumes where mining is likely to induce seismic activity.
2. To learn more about earthquake rupture and rockburst damage phenomena by deploying robust ground motion sensors close to potential fault zones and on stope hangingwalls.
3. To upgrade the South African surface national seismic network in the mining districts.

Figure 1. Schematic illustration of the research design. Jpn - Japanese researchers; CSIR - Council for Scientific and Industrial Research; CGS - Council for Geoscience

The knowledge gained during the course of the project and the new infrastructure installed will improve seismic hazard assessment methods in mines and
mitigate the risk of rockbursts. It is also anticipated that new knowledge of earthquake physics will mitigate the risks posed by tectonic earthquakes.

METHODOLOGY

Research sites have been established at mines operated by Gold One (Cooke #4 Shaft), AngloGold Ashanti (Moab-Khotson) and Sibanye Gold (Hanganaani Shaft) (Durrheim et al., 2012). Boreholes were drilled to locate faults that are considered likely to become seismically active as a result of mining activity. Acoustic emission sensors, strain- and tilt meters, and controlled seismic sources were installed to monitor the deformation of the rock mass, the accumulation of damage during the earthquake preparation phase, and changes in dynamic stress produced by the propagation of the rupture front (see Figure 1 and Table 1). The suite of sensors has greater sensitivity and dynamic range than those typically used in civil or mining engineering applications, making it possible to record very small changes in stress and strain as well as violent rock mass deformation associated with large seismic events. These data will be integrated with measurements of stope closure, stope strong motion, seismic data recorded by the mine-wide network, and stress modelling. The Council for Geoscience deployed 10 surface seismic stations in the Far West Rand district and installed the Antelope Seismic Processing System to handle the large volume of data.

ROCK PROPERTIES

By March 2013, more than 70 boreholes (totalling more than 2.8 km in length) had been drilled at project sites to locate fault zones accurately and to deploy sensors. The tensile strength, uniaxial and triaxial compressive strength, Young's modulus and Poisson's ratio of the strata surrounding the research sites are being measured using the rock testing machines in the School of Mining Engineering, University of the Witwatersrand.

IN-STOPE GEOTECHNICAL MAPPING

Stopes near to the instrumented target faults are surveyed from time to time to provide baseline data that can be used to assess the quasistatic and dynamic response of the rock mass to mining. A tape measure is laid along the face, and the face, hanging- and footwall and installed support are mapped at ca. 5 m intervals (Figure 2). Rock types, joints, faults, veins and stress-induced fractures are recorded (Figure 3), as well as the installed support units. Any anomalies between the observation points (e.g. faults, dykes, brows) are mapped, as well as any falls-of-ground.

New technologies that are being developed for in-stope mapping at CSIR include an electronic sounding device and thermal camera to map loose hangingwall slabs, a sonic closure meter, a strong ground motion sensor, and an autonomous robotic platform (Durrheim et al., 2013). The ultimate objective of this work is to improve our understanding of the factors that affect the vulnerability of a stope to seismic shaking, and to develop practical systems to map the stope and guide proactive interventions that will reduce the rockburst risk.

ACOUSTIC EMISSION MONITORING

Masao Nakatani and his team have installed a large number of acoustic emission (AE) sensors in a volume spanning 95 m (N-S) x 50 m (E-W) x 30 m (depth) at a depth of about 1 km at Cooke #4 mine (Table 1; Figure 4) (Naoi et al. 2012; Moriya et al. 2012). The 50 kHz AE sensors are installed in 60 mm diameter boreholes. In the period from 30 September to 5 October 2011 the monitoring system automatically located 40,555 AE, some of which were located by Moriya et al. (2012) using the joint hypocenter location method (Figure 3).

Moriya et al. (2012) confirmed that the condition number (a measure of the location error, Lee and Stewart, 1981) is low enough for the location to be useful over a sufficiently wide area (see the extent with condition number < 200 in Figure 3). Moriya et al.
Observational studies in South African mines to mitigate seismic risks

Durrheim et al.

(2012) also applied the multiplet and the double-difference analysis to the selected multiplets, successfully delineating multiple planar structures. A similar AE network is being completed at Moab Khotsong mine.

STRESS MEASUREMENTS

Reliable evaluations of seismic hazard depend on a reasonably accurate description of the initial stress conditions, either as an input to numerical modelling of the stress field, or as in-situ stress information. However, stress measurements are rarely carried out in South African mines. One of the main reasons is that the drilling diameter required for overcoring (76 mm NX) is much larger than the diameters used for regular geological drilling, typically AX (48mm) or BX (60mm). The drilling of large diameter holes is slower and more expensive. A single overcoring measurement often takes several days to perform.

The compact conical-ended borehole overcoring (CCBO) technique determines the 3D stress tensor by a single overcoring of a strain cell consisting of 16 or 24 strain gauges (Sugawara and Obara, 1999). However, CCBO was designed for NX holes, Ogasawara et al. (2012) reduced the overcoring and associated tools to BX size while keeping the aspect ratio unchanged so that the published strain coefficients could be used. This modified method was tested at 3 km depth at Moab Khotsong, and, after further improvements, at 3 km at TauTona and 3.4 km at Mponeng. It was demonstrated that three overcoring measurements can be made within two shifts (Ogasawara et al., 2013).

CONCLUSIONS

The mid-point of the 5-year project has passed. Most instruments have been deployed and we are now entering a period of intense monitoring. Important new observations of stress and the response of the rock mass to mining have been made, and many more are expected in the next two years as the mining front sweeps through the monitoring arrays. Ultimately we hope that this project will produce knowledge and technology that will reduce the risk posed by earthquakes.

ACKNOWLEDGMENTS

The Japanese - South African collaborative research project would have been impossible without the assistance of Anglogold Ashanti, First Uranium, Gold Fields and Gold One. The Japanese activities have been partly supported by the Japan Science Promotion Society grant in aid, by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (No. 21224012), under its Observation and Research Program for Prediction of Earthquakes and Volcanic Eruptions, and by Ritsumeikan University and Tohoku University. The South African activities have been partly supported by the Council for Scientific and Industrial Research, the Council for Geoscience, and Department of Science and Technology through the South African Research Chairs Initiative, and the University of the Witwatersrand.

REFERENCES

Observational studies in South African mines to mitigate seismic risks

Table 1: The project status as at the end of March 2013. *Installation not yet completed, # not yet procured

<table>
<thead>
<tr>
<th>Owner (Shaft)</th>
<th>Gold One (Cooke #4)</th>
<th>Anglogold Ashanti (Moab-Khotsong)</th>
<th>Sibanye Gold (Hlanganani)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ore body at experimental site</td>
<td>Several reef packages 10s of metres thick</td>
<td>Single thin tabular reef (<2 m), many faults</td>
<td>Single thin tabular reef (<2 m), few faults</td>
</tr>
<tr>
<td>Mining scenario</td>
<td>Extraction of shaft pillar, 400 m dia.</td>
<td>Extensive scattered mining</td>
<td>Sequential grid mining</td>
</tr>
<tr>
<td>Depth</td>
<td>About 1 km</td>
<td>About 3 km</td>
<td>About 3 km</td>
</tr>
<tr>
<td>Concern</td>
<td>Instability of faults in the shaft pillar</td>
<td>Instability of large faults</td>
<td>Instability of dip pillar</td>
</tr>
<tr>
<td>Fault characteristics</td>
<td>Fault gouge a few 10s of cm thick</td>
<td>Fault zone a few 10s of m thick</td>
<td>Fault gouge a few cm thick</td>
</tr>
<tr>
<td>Applicability of research to mining</td>
<td>Final stage mining e.g. shaft pillars</td>
<td>Mining in highly faulted districts</td>
<td>Sequential grid mining at depth</td>
</tr>
</tbody>
</table>

Japanese Contributions

- Acoustic emission: A few tens of sensors
- Strain: 2 strainmeters
- Velocity & attenuation: 1 Tx, 3 Rx
- Rupture dynamic stress: 3 instruments near fault
- Slow fault slip: 1 sensor
- Stress: Planned

South African Contributions

- Borehole radar: -
- Tilt: -
- Stope closure: -
- Stope ground motion: -
- Surface ground motion: Completed JICA
- Status on February 2013: Have accumulated underground data for about two years

Survey completed -
Procured 2 tilt meters; Installed 1 tiltmeter -
1 set# -
1 set accelerometers# -
New network# -
Completed drilling and 80% of underground installation -
Completed Japanese installation -