Applied Surface Science 321 (2014) 560-565

Femtosecond laser surface structuring and oxidation of chromiumthin coatings: Black chromium

L Kotsedi, (a,b), Z.Y. Nuru, (a,b), P. Mthunzi (c), T.F.G. Muller(d), S.M. Eaton (e), B. Julies(d), E. Manikandan (a,b), R. Ramponi (e), M. Maaza (a,b)

- (a) UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392,Pretoria, South Africa
- (b) Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722,Somerset West, Western Cape, South Africa
- (c) National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria, South Africa
- (d) University of the Western Cape, Physics Department, Bellville, 7535 Cape Town, South Africa
- (e) Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italya

ABSTRACT

In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous a-Cr(sub2)O(sub3) layer at the surface; higher is the input laser power, enhanced is the crystallinity of the a-Cr(sub2)O(sub3) layer. The a-Cr(sub2)O(sub3) layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

Keywords:

Chromium oxide Laser irradiation Laser surface structuring Femtosecond regime Solar absorbers