Measuring Phase with Stokes Measurements

Angela Dudley¹, Giovanni Milione², Robert Alfano² and Andrew Forbes¹.

¹ CSIR National Laser Centre, Pretoria, South Africa.

² Institute for Ultrafast Spectroscopy and Lasers, Physics Department, City College of New York, 160 Convent Ave., New York, NY 10031 USA.

Presented at 59th Annual SAIP Conference University of Johannesburg, South Africa 8 July 2013

Merely measuring the intensity of a beam does not provide the full information

Numerous methods to extract the phase exist... But they are often over-complicated and expensive

The phase difference between the horizontal and vertical components of a field can be extracted via Stokes polarimetry

$$S_{0}(r,\phi) = |U_{\leftrightarrow}(r,\phi)|^{2} + |U_{\uparrow}(r,\phi)|^{2} = I_{0^{\circ}} + I_{90^{\circ}}$$

$$S_{1}(r,\phi) = |U_{\leftrightarrow}(r,\phi)|^{2} - |U_{\uparrow}(r,\phi)|^{2} = I_{0^{\circ}} - I_{90^{\circ}}$$

$$S_{2}(r,\phi) = 2|U_{\leftrightarrow}(r,\phi)||U_{\uparrow}(r,\phi)|\cos(\delta(r,\phi)) = I_{45^{\circ}} - I_{135^{\circ}}$$

$$S_{3}(r,\phi) = 2|U_{\leftrightarrow}(r,\phi)||U_{\uparrow}(r,\phi)|\sin(\delta(r,\phi)) = I_{R} - I_{L}$$

$$\delta(r,\phi) = \frac{1}{2}\arctan\left(\frac{S_{3}(r,\phi)}{S_{2}(r,\phi)}\right)$$

 \longleftrightarrow

&

 $\bigstar |U_{\leftrightarrow}(r,\phi)|\mathbf{\hat{x}} + |U_{\uparrow}(r,\phi)|\mathbf{\hat{y}}\exp(i\delta(r,\phi))| : \text{Control the phase between } \mathbf{\int}$

Stokes polarimetry involves four separate measurements

Requirements for a digital adaptation of Stokes polarimetery:

Spatial light modulators allow us to alter the phase of an optical field

A polarization grating is a beam-splitter for left- and rightcircularly polarized light... allowing two Stokes parameters to be measured simultaneously

Combining these techniques, we can develop an all-digital approach for extracting phase

Our approach consists of only 3 components: LCD, PG and CCD

The modes that can be measured are endless...

The SLM can also mimic free-space propagation

$$U(\mathbf{r}, z) = \mathcal{F}^{-1}[\mathcal{F}[U(\mathbf{r}, 0)] \exp(ik_z z)]$$

This allows us to extract the phase of propagating beams in real-time

Opt. Express **22**(11), 14031-14040 (2014)

This could lead to understanding the dynamics of phase singularities

