

Towards a Comfortable, Energy-Efficient Office

using a Publish-Subscribe Pattern in an
Internet of Things Environment

LL Butgereit1,2

1Nelson Mandela Metropolitan University and 2CSIR Meraka Institute
South Africa

laurie.butgereit(at)nmmu.ac.za
lbutgereit(at)meraka.org.za

AC Smith2,3

3University of South Africa and 2CSIR Meraka Institute
South Africa

acsmith(at)csir.co.za

T Thomson
CSIR Meraka Institute

South Africa
connect(at)thanethomson.com

Abstract

The modern office is maintained by air conditioners, heaters, lights, smoke detectors,
thermostats and other devices. Manufacturers are continually improving these various
devices and adding more features – especially Internet connectivity. These new devices
are often called smart devices. The Internet of Things is the new paradigm of more and
more physical objects being connected to the Internet. As these objects begin interacting,
mechanisms need to be in place to route data messages from the many objects to the
correct applications which process that data. For example, the data from the thermostat in
Office A must not be routed to the application controlling the temperature in Office B. One
such mechanism is the publish-subscribe pattern often just called the pub-sub pattern.
The pub-sub pattern enables applications to subscribe to data from certain resources.
When a resource publishes data, the surrounding platform ensures that the data is
forwarded to the correct subscribers. This paper describes an implementation of the pub-
sub pattern specifically for an Internet of Things platform which operated at four levels –
sensors (and actuator), Supervisors, Middleware, and application. This platform was
specifically instantiated to control a typical office meeting room. The instantiation monitors
the state of the doors and windows (open or closed), whether there are people in the
room, the current temperature in the room, and the current electrical consumption. It then
makes intelligent decisions as to how best to control the air conditioner in the meeting
room.

Keywords

IoT, pub-sub

1 Introduction

The modern office consists of typical digital devices such as computers, fax machines, and

telephones and also includes devices which are not primarily thought of as digital devices.

These unseen devices consist of items such as air conditioners, heaters, smoke detectors,

and lights. However, these devices are becoming more and more digital as manufacturers

add features to them. In adding features, these devices start generating data and

responding to data.

Beyond the office, the world is full of data. A simple walk down the street could overwhelm

a person with millions of bits of data if there was not some sort of discrimination

mechanism to filter this information. Sometimes this human discrimination mechanism

gets distorted. The prime example of this is when a person buys a new car and then

begins to notice that same make and model of that car everywhere in traffic. The

prevalence of that make and model car does not increase substantially; the person merely

notices the make and model car more often.

The Internet of Things is also full of data. As more and more physical objects become

Internet enabled, the amount of data increases. For applications which are monitoring

these objects or subsets thereof, a mechanism is needed to enable the applications to only

receive data from objects in which they have an interest. One such programming pattern

which has been implemented to solve this problem is the publish-subscribe pattern (often

called the pub-sub pattern).

In a publish-subscribe implementation, subscribers have the ability to express an interest

in a particular event and they are subsequently notified by a publisher when the event

occurs (Eugster, Felber et al. 2003, Huang, Garcia-Molina 2004, Tarkoma 2012). This

paper describes work in implementing a pub-sub pattern for the Internet of Things linking

together four levels of components from sensors (or actuators), a supervisor device, a

middleware router, and an application.

2 Background

Since its inception, the Internet has grown from a few inter-connected computer nodes to a

network servicing more than a billion users (Kopetz 2011). Physical objects are being

enhanced with electronic components giving the objects the capability to interact with the

Internet. This connection of physical things to the Internet makes it possible to access

remote sensor data and to control the physical world from a distance (Kopetz 2011).

As more physical objects are connected to the Internet, scalability becomes increasingly

important. As billions of objects start communicating using the Internet of Things,

scalability mechanisms which enable high volume communication become more important

(Uckelmann, Harrison et al. 2011).

3 Research Question and Methodology

The research question addressed with this paper is “Can the pub-sub pattern be

implemented for an Internet of Things platform which controls the level of human comfort

in an office environment?” Here, the paper investigates a phenomenon which is the result

of human activity and also under the control of humans as opposed to activities that are

beyond human control. Vaishnavi and Kuechler (2013) indicate that the Design Science

Research methodology is well suited for investigating a phenomenon as described here.

Purao (2013) also indicates that the goal of the Design Science Research methodology is

to change reality through the creation of artifacts in order to address a perceived problem.

The problem addressed here is the use of a pub-sub pattern used in conjunction with the

Internet of Things in order to control certain aspects of an office environment. From the

preceding, it seems that the Design Science Research methodology would suit the current

research project well. Therefore, the Design Science research methodology is used in

conducting the current research.

The application of the Design Science Research methodology prescribes that an artifact

be developed. The artifact could be a construct, a model, a method, and/or an

instantiation (March, Smith 1995, Hevner, March et al. 2004). Constructs consist of

vocabulary and symbols, whereas, models are abstractions and representations. Methods

are algorithms and practices, whilst instantiations are implementations or prototypes of

models and/or methods.

Hevner et. al. (2004) state that the Design Science Research methodology is a design

process which is both incremental as well as iterative. What makes the Design Science

Research methodology attractive for certain types of research questions is that this

methodology makes provision that not all the required knowledge for answering the

research question is known at the onset of a project. As described by Vaishnavi &

Kuechler (2013), this methodology acknowledges that additional information is gathered

during each iteration. Here, an iteration typically consists of three phases, and these are

the suggestion phase, the development phase, and the evaluation phase. An additional

phase is relevant at the onset of the research, and this phase is called “awareness of the

problem”. In addition, a final phase is executed at the end of the final iteration, and this

phase is called “conclusion”. Whereas a full iteration comprises of these five phases, not

all the phases need to be executed during all the iterations; some iterations may terminate

immediately after either the development or evaluation phases have been concluded.

Upon such termination, knowledge gained from the current iteration is added to the

existing (and incomplete) knowledge base and this process is called “circumscription”.

For the scope of this research project, both a model of how the pub-sub pattern could be

used with Internet of Things was created and an instantiation or implementation of that

model across four levels of interaction.

Kuechler, Vaishnavi, and Petter state that Design Science Research is also called

“improvement research” (Vaishnavi, Kuechler 2007, p. 32) which emphasises the problem

solving and improvement nature of the research. The set of five steps mentioned above

that comprise awareness, suggestion, development, evaluation, and conclusion, is also

known as the General Design Cycle.

All Design Science Research begins with an awareness of a problem. This awareness

can be created by reading literature, conversations with colleagues, or personal

experience. The suggestions on how to solve this problem can also come from existing

literature or can come from conversations with colleagues. These suggestions are then

investigated in detail and actually developed. The resulting artifact is subsequently

evaluated to see if it solves the problem. Conclusions can then be drawn.

It is important to note that the General Design Cycle is, in fact, a cycle. The fives steps can

be iterated numerous times, with the design usually improving in each cycle.

4 Architecture

An overview of the architecture is depicted in Figure 1. At the lowest level of the

architecture are a number of sensors and actuators which communicate with the physical

world. These include a passive infrared (PIR) detector, temperature sensor, current

sensor, door and window sensors, and an actuator in the form of an air conditioner. All the

sensors send their data to an Arduino Uno circuit (Barrett 2012), whilst the same circuit

controls the actuator. In turn, the Arduino board communicates with the Raspberry Pi

circuit (Barnes 2014) via a USB cable. Python programming language software executing

on the Raspberry Pi circuit implements the pub-sub pattern. This software is called the

Supervisor. Supervisors are designed to communicate with the Middleware using either a

wired network or wireless network (depending on the capabilities of the particular

Raspberry Pi circuit employed in the design). The Middleware executes on a host

computer which, in turn, routes messages to the correct application. Communication

between the Supervisor and the Middleware is possible using standard Internet

communication layer technology such as a wired network (CAT5 or CAT6) or a wireless

network such as WiFi. Our implementation makes use of a wired network. Although this

architecture makes provision for multiple supervisors, this research project only considers

a single supervisor. RESTful HTTP is the higher level protocol that links the Raspberry Pi,

the Middleware, and the applications. Communication between the Arduino Uno circuit

and the Raspberry Pi circuit is supported by the open Firmata protocol (Margolis, Weldin

2011).

Figure 1: Architecture

In our implementation, all HTTP messages for pub-sub are encoded as JSON (JavaScript

Object Notation) messages. It is important to note that the messages for resource

discovery (which are not necessarily the subject of this paper) are in CoRE Link format

(Shelby 2012) rather than JSON. The actual format of these JSON messages constitute

the bulk of this paper.

As more physical objects become connected to the Internet, the imperative to move from

IPv4 (Internet Protocol version 4) to IPv6 (Internet Protocol version 6) becomes stronger.

IPv6 (Stallings 1996) uses 128-bit addressing, thereby providing for 2128 uniquely

identifiable devices as opposed to the alternative IPv4 addressing which uses 32-bit

addressing and consequently allowing for only 232 uniquely identifiable devices (Hain,

Huston 2005). In this model and implementation, IPv6 is only used for communication

between the Middleware and the Supervisor. The remaining portion runs on IPv4.

5 Enrolment

When supervisors and/or applications wish to utilise the Middleware, it is necessary to first

enrol with the platform. This enrolment process requires information including a unique

identifier, and the type of the object. Of primary importance, however, is that the enrolment

process includes the IP address (either IPv4 or IPv6) of the object and a port number.

Depending on the object type, additional information could be included. For example, in

the case of software applications an additional context could be provided. A sample

message could look like:

{

 “name” : “name of the object”,

 “hostAddress” : “host address and optional port number:,

 “uid” : “unique identifier”,

 “context” : “optional context of use by software applications”,

 “type” : “the type of the object”

}

This information is sent by either the Supervisor or the application to the Middleware using

RESTful PUT.

6 Resource Discovery

In order for the pub-sub pattern to work, it must be preceded by a discovery of the

available resources. For example, in Figure 1, if the application shown needs to subscribe

to a published value on a sensor, it must first discover that sensor. There are a number of

mechanisms which could be used for discovering resources (such as sensors and

actuators) (Shelby 2010), but the use of a well-known core file also known as CoRE

(Constrained RESTful Environments) Link format (Shelby 2012) was chosed for this

research.

In the case of an implementation (such as this one) that uses the Constrained RESTful

Environment Link format, each Supervisor publishes a well-known core file. This file is an

aggregation of the devices which the Supervisor monitors and actuates. The Middleware

then aggregates all well-known core files from each supervisor. In addition, at a higher

level, applications can also publish their own well-known cores which are also aggregated

at the Middleware level. An example of an extract from a well-known core file is as follows:

<http://[xxxx:xxxx:xxxx:x::312]:8104/window>;rt="window-

string";uid="20001234";title="Matrix boardroom window state as o/c",

<http://[xxxx:xxxx:xxxx:x::312]:8104/temperature>;rt="temp-

float";uid="20001234";title="Matrix boardroom temperature in Deg C",

<http://[xxxx:xxxx:xxxx:x::312]:8104/ampere>;rt="ampere-

float";uid="20001234";title="Matrix boardroom airconditioner power

consumption"

7 Subscribe and Unsubscribe

When an application or other entity wishes to subscribe to a resource (assuming that

discovery has already occurred), a subscription request is sent from the application to the

Middleware via a RESTful PUT message. The JSON subscription messages adhere to

the following format:

{

 “publisher” : “publisher identifier”,

 “subscriber” : “subscriber identifier”

 }

Here, the strings “publisher identifier” and “subscriber identifier” represent identifying

strings of the publisher and subscriber respectfully. Other security messages unrelated to

the pub-sub pattern are implemented to keep track of the IP address (IPv4 or IPv6 as

appropriate) in order to send and identify subsequent messages.

Through previous discovery requests, the Middleware knows which Supervisor manages

the sensor indicated by the publisher field and forwards the identical message to the

Supervisor. In the model, in order to unsubscribe from a resource or sensor, the

application must send the identical JSON request as an HTTP DELETE message.

However, in the actual implementation of this feature, it was found that the Java

implementation of HttpURLConnection does not support a payload with the DELETE

request and a modified format was used in the instantiation by sending all the required

data as HTTP query parameters.

8 Data

In the current implementation, the Supervisor continually monitors data received from the

sensors. When appropriate, the supervisor forwards this data to the Middleware as a

JSON message of the following format:

{

 “resource” : “publisher identifier”,

 “values” : [

 { “timestamp” : “date value” },

 { “value” : “data value” } …

]

 }

where “publisher identifier” is the same publisher indicated in the subscription. Any

number of timestamp/value pairs can be included in the values array. This bundling of

data would be appropriate when Supervisors were offline for periods of time. When the

Middleware receives such a message, it forwards it to as many applications as have

subscribed to the particular sensor. In other words, data is sent once from the sensor to

the Supervisor and once from the Supervisor to the Middleware. Then the data is

forwarded multiple times to the various applications that have subscribed to the particular

sensor. In addition, the Middleware stores all data on a transaction file for later analysis if

necessary.

9 Implementation

For the actual implementation for this research project, an office meeting room was

instrumented with multiple sensors and one actuator. Sensors were mounted on the door

and window which could indicate if the door or window changed state from open to closed

or from closed to open. A passive IR sensor was installed to determine if there were

people in the room. There were also a room temperature sensor and an electrical current

sensor on the air conditioner unit. In addition, there was an actuator which controlled the

output of the air conditioner. The air conditioner could be instructed to turn on, to turn off,

to increase output, and to decrease output. However, a heater was not implemented in

this research project.

9.1 Application

In this particular implementation, the application subscribed to the change of state in a

door and in a window. That means if the state of the door or the state of the window

changed from open to closed or from closed to open, the application received that

information. The application also subscribed to the passive IR sensor to indicate if there

were people in the room. In addition, the application subscribed to the temperature in the

office meeting room and periodically received this information. At the time of authoring this

paper the current sensor was not used. The application implemented a number of rules

such as:

1. If the door or window was open, then the air conditioner unit would be turned off.

2. If the door and window were closed, and there were people in the room, then the air

conditioner would be turned on.

3. If the temperature was above a certain threshold, and there were people in the

room, and the door and window were closed, then the air conditioner would

increase output.

4. If the temperature was below a certain threshold, and there were people in the

room, and the door and window were closed, then the air conditioner would

decrease output.

9.2 Supervisor

Although the Raspberry Pi Model B circuit contains a powerful processor along with USB

ports, high definition video output capabilities, solid state memory, and Ethernet

connectivity, it lacks robust input/output capabilities with which to interface with

experimental electronic sensing and control circuits. An often used companion for the

Raspberry Pi circuit is the Arduino series of electronic circuits. The Arduino circuits, and

specifically the Arduino Uno series, are designed and developed as open technology

experimental circuits. These are ideal for novice electronic enthusiasts who want to

connect devices in the physical domain to software processes executing in the digital

domain. Although the Arduino circuit lacks the processing power, USB ports, Internet

connectivity and solid state memory capacity of the Raspberry Pi, it excels at simplicity,

convenience, cost, and robustness. These three attributes make the Arduino Uno circuit an

ideal companion to the Raspberry Pi circuit when the digital and physical domains have to

be interconnected. For the current implementation of the Supervisor, the Raspberry Pi and

Arduino Uno circuit combination as described here have been used.

9.2.1 Raspberry Pi Circuit

In the current implementation, the Raspberry Pi circuit executes complicated software

routines whereas the Arduino Uno circuit executes relatively mundane routines. Although

these routines executing on the Arduino Uno circuit may not be as sophisticated as those

executing on the Raspberry Pi circuit, they nevertheless provide the interface between the

physical and digital domains which is so important to this research project.

The processes executing on the Raspberry Pi circuit rely on a version of the Debian

operating system for support, such as providing access to the Ethernet and USB ports.

This version is called Raspbian. All of the custom software executing on the Raspberry Pi

circuit were written in the Python interpreted programming language. This language is

preinstalled with the Raspbian operating system and is simple to use.

Two software modules are core to the operation of the Supervisor. The first of these is the

module which interfaces with the process executing on the Arduino Uno circuit. Using this

module, the status of the Arduino Uno circuit’s hardware pins can be monitored and

controlled. How these pins are used is described in the paragraphs that deal with the

Arduino Uno circuit. Depending on how frequently the overall system needs to be informed

of changes in the physical domain, the software can interrogate the Arduino Uno circuit at

a wide range of timing intervals. In the current implementation, the status of the Arduino

Uno circuit’s hardware pins are updated at a rate of approximately once a second.

Although this rate is not usually required for sensing the status of doors and windows, or

determining the temperature in the room, it is very useful in determining the instantaneous

current consumed by the air conditioner in the room. These currents can fluctuate widely

within the span of a few seconds and it is worthwhile to capture these fluctuations at a

resolution of one second intervals. The second software module executing on the

Raspberry Pi circuit is responsible for communicating with the Middleware. Communication

is accomplished using the Constrained RESTful Environments Link format and JSON

formatted messages. Physical communication between the Supervisor and the Middleware

is achieved using the Ethernet interface which is available on the Raspberry Pi circuit. An

alternative physical communication channel is by means of a WiFi radio, but this research

project did not implement this option. The following subsection describes the Arduino Uno

circuit which is used in tandem with the Raspberry Pi circuit to create a Supervisor

hardware module.

9.2.2 Arduino Uno circuit

A Raspberry Pi circuit is not fully capable of interfacing to the physical domain without the

aid of additional electronic circuitry. It is for this reason that the Arduino Uno circuit is used

in conjunction with the Raspberry Pi circuit. Together, these two circuits constitute the

hardware framework of the Supervisor. A system architect can specify which sensors and

actuators should be integrated with the Supervisor framework. In the current design, two

separate sensors for a door and a window, a passive IR sensor, a temperature sensor, and

a sensor to measure the flow of electrical current to the air conditioner located in the

meeting room are implemented. Although the Arduino Uno circuit does not host a powerful

processor such as contained in the Raspberry Pi circuit, it nevertheless has a processor

suitable for controlling and sensing connected devices. The same processor also executes

software which communicates with those executing on the Raspberry Pi circuit.

Communication between these two circuits follows a protocol implemented by the open

standard Firmata software suite. This software suite was developed by a volunteer

software community and is available for use on a wide variety of processor dependant

hardware platforms, of which the Arduino Uno circuit is one. Using the Firmata suite on the

Arduino Uno circuit, commands can be received from the Raspberry Pi circuit and results

can in turn be relayed back to the Raspberry Pi circuit from the Arduino Uno circuit.

As used in this research project, each of the door and window sensors is connected to one

of two input pins respectively on the Arduino Uno circuit. Because the door and window

sensors are in the form of reed switches, additional biasing resistors were also attached to

the two respective input pins. Without these resistors, and while the reed switches are in

an open state, spurious electrical signals might cause erratic changes in the sensed pin;

the addition of the resistors eliminates this problem. Both the door and windows sensors

are activated by the presence of a magnetic field. To sense whether a door is open, a reed

switch is attached at the top of the door frame with this position being on the side opposite

to the door hinges. A permanent magnet is in turn attached to the door in a position

corresponding to the reed switch. The result is that the reed switch is activated by the

permanent magnet when the door is closed, and the reed switch opens again when the

door opens. Detecting the status of the window is similar to that of the door. Here, the

magnet is attached to the top of the window and the reed switch to the top of the window

frame in a corresponding position.

Temperature is sensed using a dedicated sensor procured for this purpose. This sensor

has three electrical connections and presents the current ambient temperature in degrees

Celsius. Two of these connections supply power to the sensor, with the third connection

being assigned to providing data representing the temperature.

It is not only the temperature sensor that requires a power source; the passive IR sensor

also contains its own electronic circuit which must be powered via two wires. As is the case

for the temperature sensor, power is supplied by the Arduino Uno circuit. Also similar to the

temperature sensor, a third electrical connection provides data that reflect the presence or

absence of one or more persons in the meeting room. The data thus provided is

maintained on the third electrical connection for a period of approximately 500 milliseconds

and can be described as follows: When no person has been detected for 500 milliseconds,

the data is set to a binary “0”. However, when a person is detected, the data is set to a

binary “1” and remains in that state for 500 milliseconds. After this time has expired the

data will be set to a binary 0 until such time as a person is detected again.

Detecting the electrical current that flows to the air conditioner is somewhat more

complicated than detecting the binary states of the sensors described above. To detect the

electrical current, a device known as a “current transformer” is attached around the “live”

wire leading to the air conditioner. A resistor is connected in situ and across the current

transformer. The result is a varying analogue voltage that provides a direct indication of the

current flowing through the live wire. Unfortunately this simple configuration does not cater

for a phase difference between the voltage and the current flow in the wire being

monitored. However, for the purposes of this research project, this small inaccuracy is

acceptable. An analogue sensing pin on the Arduino Uno circuit provides a means of

measuring the changing analogue signal.

The final attachment to the Arduino Uno circuit is an infrared emitting diode with which the

air conditioner can be controlled. This diode is placed in close proximity to the air

conditioner’s own infrared signal receiver, thereby allowing the Arduino Uno circuit to

control some of the functions of the air conditioner in lieu of the usual hand controller.

10 Results

A number of experiments were conducted while the meeting room was in use. Specific

problems which were encountered included:

1. The air conditioner in the office was mounted high on the wall and, initially, the

temperature sensor was mounted at that same height. This location was not ideal

and the sensor was subsequently moved. Initially, when the air conditioner expelled

cold air, the cold air descended below the temperature sensor. This meant that

during our original implementation, the application continually received

temperatures which were high (hot air rises) and kept increasing the output of the

air conditioner unnecessarily. However, the people in the meeting room were

experiencing very cold temperatures since the cold air produced by the air

conditioner settled at lower levels. Later configurations placed the temperature

sensor at desk height.

2. Passive IR sensors operate by detecting signal changes as a heat source moves

across adjacent detection zones. These zones are determined by a Fresnel lens

mounted in front of an IR detector. Body heat generated by humans is usually

sufficient to trigger a passive IR sensor. Using such sensors, it is usually possible

to determine if one or more persons are within a room as long as at least one

person does not remain stationary. If a person is seated in a high backed chair and

turned away from the sensor, the sensor is not able to detect the radiated heat

through the chair back. In some cases, if the person was above average height and

his or her shoulders and head cleared the high chair back, then the person could be

detected. Shorter people were often not detected. For the scope of this research,

this problem was not satisfactorily solved.

The solution to problem #1 above, however, is an example of the advantage of the

General Design Cycle: awareness, suggestion, development, evaluation, and conclusion.

By evaluating the design numerous times and cycling over the steps, the design could be

improved. For example, on the actuation side:

1. The controlling application could turn the air conditioner on and off appropriately

(taking into account the two problems indicated above).

2. The controlling application could increase or decrease the output of the air

conditioner appropriately (again, taking into account the two problems indicated

above).

The primary scope of this research, however, was to determine if the pub-sub pattern was

suitable for such an environment which attempted to control the comfort of an office

meeting room while, at the same time, being energy efficient. In this respect, the pub-sub

mechanism worked properly and removed the requirement of wasteful polling to obtain

data from the sensors.

11 Conclusion

As more tangible objects become Internet connected, the Internet of Things grows.

Mechanisms need to be put in place to be able to easily monitor the data which are being

generated by this vast collection of smart objects. This paper investigates whether the

pub-sub model is suitable for an Internet of Things platform which operates at four levels

(sensors or actuators, Supervisor, Middleware, and application). A model is created for

this interaction. The model was subsequently instantiated using HTTP with all HTTP

messages being in the format of JSON messages.

Although this paper primarily investigates the use of the pub-sub pattern, it is important to

note that there are two supporting mechanisms. First, there is an enrolment/unenrolment

mechanism allowing subscribers to join and leave the platform. The enrolment process

also provides important additional information about the object. Second, there is also a

discovery mechanism which allows subscribers to look for potential publishers of

information.

As the word “towards” in the title of this paper indicates, the work reported here is the first

of multiple anticipated design cycles. Some of the design challenges we faced are stated

in the results section, but other challenges remain. For instance, we are investigating

mechanisms by which we can determine the number of persons in the room as well as get

an indication of their activities within the room. We then hope to find a correlation between

the energy consumption and the activities taking place within the room.

Acknowledgement

The authors would like to thank the valuable comments and suggestions of an anonymous

reviewer and hope to address these appropriately in a subsequent paper.

12 References

BARNES, R., 2014. Raspberry Pi - the Complete Manual. Imagine Publishing Ltd.

BARRETT, S.F., 2012. Arduino Microcontroller: Processing for Everyone! Synthesis
Lectures on Digital Circuits and Systems, 7(2), pp. 1-371.

EUGSTER, P.T., FELBER, P.A., GUERRAOUI, R. and KERMARREC, A., 2003. The many
faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2), pp. 114-131.

HAIN, T. and HUSTON, G., 2005. A pragmatic report on IPv4 address space consumption.
The Internet Protocol Journal, 8(3), pp. 2-19.

HEVNER, A.R., MARCH, S.T., PARK, J. and RAM, S., 2004. Design science in information
systems research. Management information systems quarterly, 28(1), pp. 75-106.

HUANG, Y. and GARCIA-MOLINA, H., 2004. Publish/subscribe in a mobile environment.
Wireless Networks, 10(6), pp. 643-652.

KOPETZ, H., 2011. Internet of things. Real-Time Systems. Springer, pp. 307-323.

MARCH, S.T. and SMITH, G.F., 1995. Design and natural science research on information
technology. Decision Support Systems, 15(4), pp. 251-266.

MARGOLIS, M. and WELDIN, N.R., 2011. Arduino Cookbook. O'Reilly Media, Inc.

PURAO, S., 2013. Truth or dare: The ontology question in design science research.
Journal of Database Management (JDM), 24(3), pp. 51-66.

SHELBY, Z., 2012. Constrained RESTful Environments (CoRE) Link Format.

SHELBY, Z., 2010. Embedded web services. Wireless Communications, IEEE, 17(6), pp.

52-57.

STALLINGS, W., 1996. IPv6: the new Internet protocol. Communications Magazine, IEEE,
34(7), pp. 96-108.

TARKOMA, S., 2012. Publish/subscribe Systems: Design and Principles. Wiley.com.

UCKELMANN, D., HARRISON, M. and MICHAHELLES, F., 2011. Architecting the internet
of things. Springer.

VAISHNAVI, V. and KUECHLER, W., 2007. Design science research methods and
patterns: innovating information and communication technology. CRC Press.

VAISNAVI, V. and KUECHLER, W., 2013-last update, Design Science research in
information systems. Available: http://www.desrist.org/design-research-in-information-
systemsJune 23, 2013].

http://www.desrist.org/design-research-in-information-systems
http://www.desrist.org/design-research-in-information-systems

