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Abstract—There are many important informational aspects
associated with the audio data, but one common component is
the topic under discussion. Knowing the topic can help process
the data in a variety of ways – cluster similar audio recordings
based on the topic or improve ASR recognition outputs by using
appropriate language models.

In this work, the best spoken audio topic identification system
achieved an error rate of 17.6%, using an ASR system that
produced an average word error rate of 57% and supervised la-
tent Dirichlet allocation topic modelling technique. The proposed
language model topic modelling technique, produced the worst
results, highlighting the sensitivity to high ASR word error rates.
The support vector machine topic classifier, which made use of a
simplified term-weighted feature vector, performed comparably
to that of the term frequency inverse document frequency feature
vectors.

I. INTRODUCTION

In the current ICT age, there are many media sources that
generate and archive large volumes of audio data, that contains
spoken audio. These sources are varied:

• Call centres, which generally archive incoming calls.

• Broadcasters, such as television stations (SABC, e-
TV), radio stations (702, RSG) or Internet sites
(YouTube, Vimeo, SoundCloud).

• Government institutes, such as Parliament or courts.

• Military and security organizations who comb audio
for intelligence.

• Universities recording and distributing lectures.

Given the massive volume of audio data, it becomes
impractical for humans to listen to and annotate the data. Thus,
there is a definite need to find methods that can be used to
automatically process and extract useful information from the
data. The information that needs to be extracted, is defined
by the particular application, but one general information
component found throughout spoken audio is the topic under
discussion. Identifying the topic, allows clustering of similar
audio streams or archived recordings. Furthermore, an audio
stream can be segmented by topic, which provides a means to
search within the audio stream and can vastly reduce the time
needed to search through the audio and find regions of interest.
When performing automatic transcribing, an automatic speech
recognition (ASR) system can use dynamic-topic-tracking in-
formation to adapt and specialize a language model, used
during the decoding operation when searching for the most
likely spoken text, and improve the recognition results.

II. BACKGROUND

A topic is described as a probability distribution over a set
of words or phrases [1]. Each document in a corpus, contains
words that can be thought of, as being drawn from a mixture of
topics [1], [2]. A topic model specifies the topics that occur in
a corpus and the topical proportions found in the documents.
Using the topic model, one can work back from the words
found in a document and determine the distribution of topics
or most likely topics used to generate the document. There are
a number of text-based topic modelling approaches.

Latent semantic analysis (LSA), maps a high-dimensional
word space to a lower dimensional representation, named
the latent semantic space[3]. The data mapping function is
determined by finding a representation that preserves the most
relevant information for the given topics. An extension to
LSA is probabilistic latent semantic analysis (PLSA), which
introduces a latent topic space and estimates joint probability
models, that model the relationship between the hidden latent
topics and the documents as well as the relationship between
the hidden latent topics and the words [3], [4]. One drawback
of PLSA is that the model parameters increase as more
documents are added to the corpus.

In unsupervised latent Dirichlet allocation (LDA) approach,
a document is assumed to be drawn from a weighted mixture
of topics. Similar to PLSA, hidden latent variables are used to
model topical structures given a set of observed words [5] but
the distributions, however, are drawn from Dirichlet distribu-
tions. When training with the unsupervised LDA approach,
no topic labels are needed as the topics are “discovered”
during the training process. A supervised version of LDA [2]
is avaliable – supervised latent Dirichlet allocation (SLDA)
– which makes use of the labels during the model training
process. During estimation, a response variable is assigned to
each document, and, the documents and response variables are
jointly modelled to maximise the likelihood between response
variables and labelled documents.

Topic modelling and identification is performed on text
resources, which can extended to spoken audio streams by
using an automatic speech recognition system (ASR). Current
state-of-the-art large vocabulary speaker independent speech
recognition systems are used to generate text transcriptions
for the unannotated audio, but these typically produce word
error rates (WER) greater than 10%. Hazen et. al. [6] reported
that their ASR system (trained on 553 hours of spoken audio)
would on average achieve a 40% WER but still yielded a topic
identification error rate of 9.6%. Similarly, Wintrode and Kulp
[7] achieved a topic identification error rate of 10.1% with an
ASR system that delivered a WER of 34%. This highlights



that topic identification is possible even at high WERs which
relaxes the needed for finely-tuned ASR systems.

A suitable classifier used for spoken audio topic identifica-
tion is support vector machines (SVMs). Suitable SVM topic
feature vectors are constructed using term frequency inverse
document frequency (TF-IDF) values [6], [7] . TF-IDF are
calculated by normalising a within-document term’s frequency
by the frequency of occurrence across all documents. This in
effect, reduces the weight of terms that are common to all
documents and increases the weight of terms that appear in a
few documents but occur frequently within a document. Using
a SVM topic classifier and TF-IDF features, Wintrode and
Kulp [7] achieved a topic identification error rate of 10.1%.
Other approaches can also be used to select topic specific
words, such as χ2 statistics, as investigated by Hazen et. al.
[6], who managed to achieve topic identification error rates
of 16.8% for words and 35.3% for 3-gram phones on call
sides (single channel of a two-way telephone call) and 9.6%
for words and 22.9% for 3-gram on the whole call. Both
investigations performed the topic identification on the Fisher
corpus – a corpus that contains conversational telephone audio
where the participants discuss 40 topics.

The primary aim of this work, was to investigate spoken
audio topic identification, which could be used by a system
to find structure in audio data. In this domain, the Fisher
corpus is commonly used to develop and evaluate topic iden-
tification systems. As the Fisher corpus contains topic labels,
techniques such PLSA or unsupervised LDA are not needed.
More appropriate topic identification approaches are ones that
make use of SVMs or supervised LDA. Therefore, in this
investigation, a spoken audio topic identification system was
developed and evaluated on the Fisher corpus, using SVM
and SLDA topic classifiers. In addition, language modelling
techniques were also investigated, to determine their suitability
in topic identification tasks.

III. METHOD

A. Fisher corpus

The Fisher corpus [8] contains two speaker telephone
conversations, where the participants were instructed to discuss
a certain topic for a duration of ten minutes. There are 40
topics, covered by the corpus, such as “Movies” and “Foreign
Relations”. For this investigation only the training part of the
English phase 1 corpus was available.

To proceed with the development and evaluation of the
spoken audio topic identification system, the available Fisher
corpus data was divided into speaker independent training,
development and evaluation sets. The splitting process created
two gender-dependent sub-corpora that contained 100 hours of
training audio data and 50 hours of audio data for the develop-
ment and evaluation datasets. The more traditional 80%-10%-
10% dataset split was not chosen as to reduce the training and
decoding recognition times. The data selection process made
use of the topic and speaker labels when partitioning the data.
Each dataset had mutually exclusive speaker sets and uniform
topic selection was also performed. Table I shows the modified
English Fisher corpus used during this investigation.

The gender split audio and text data were used to train
gender-dependent acoustic models, however, when training

TABLE I. TRAINING, DEVELOPMENT AND EVALUATION SET
PARTITIONS OF THE ENGLISH FISHER CORPUS.

Data Set Male Female
# Call Sides # Utterances # Call Sides # Utterances

Train 1084 85617 1154 101412
Development 518 46646 693 67669

Evaluation 519 47384 672 66600

the SVM classifier and language models, the text data was
combined. Topic identification was performed using the call
sides – a call side contains a single speaker on one channel.

B. Topic identification system

Figure 1 shows a flow diagram that describes the topic iden-
tification system. First, the audio data was split by gender and
recognised by a speech recognition system, that used gender-
dependent acoustic models and a bi-gram language model.
The bi-gram language model was trained on all the training
text data. Next, the automatically generated transcriptions were
processed by the various topic identification classifiers, which
identified the most likely topic, given the recognised words.
The topic identification approaches processed all the text
generated from a call side, when estimating the topic under
discussion.

C. Pronunciation dictionary

The CMUDict0.7a [9] pronunciation dictionary was
sourced as a seed North American English pronunciation dic-
tionary. It contains over 125k words and uses 39 stress-marked
phonemes. For this investigation, the stress markings were
removed. Phonetisaurus [10] was used to perform grapheme-
to-phoneme (G2P) prediction for words not found in the seed
pronunciation dictionary. Phonetisaurus implements a WFST-
driven G2P framework that is used to rapidly develop high
quality G2P or P2G (phoneme-to-grapheme) systems – it does
this by learning statistical rules from a seed pronunciation
dictionary. The final pronunciation dictionary contained 44385
words in total (all unique).

D. Speech recognition systems

Audio data was converted to Perceptual Linear Prediction
(PLP) coefficients where each 52 dimensional feature vector
was created by appending the first, second and third derivatives
to the 13 static coefficients (including the 0’th component). The
frame length was 25 ms and the frame shift was 10 ms. The
only form of feature normalisation was corpus-wide mean and
variance normalisation.

The acoustic models (AM) were developed in an iterative
training scheme. Firstly, 32-mixture context-independent (CI)
AMs were trained and used to produce state aligns for the CI
AMs trained in the initial development of cross-word triphone
context-dependent (CD) AMs. Once the CD AMs were trained,
the process was repeated, except the AMs, generated during
the previous iteration, were used to produce state alignments
up and till the mixture incrementing phase. The process was
repeated twice for all experiments.

All hidden Markov models (HMM) employed a three state
left-to-right structure and each CD HMM state contained 16
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Fig. 1. A high-level flow diagram of the topic identification system components.

mixture diagonal covariance Gaussian models. A question-
based tying scheme was followed to create a tied-state data
sharing system [11], where any context-dependent triphone,
that has the same central context, could be tied together.

Once the CD AM development was completed, het-
eroscedastic linear discriminant analysis (HLDA) was applied
to reduce the 52-dimensional PLP feature vectors to a 39-
dimensional vector. A global transform was used for the
estimation – a single class for all triphones. After estimating
the HLDA transform, the CD AMs’ parameters were updated
while applying the transform. Only the weight and mean
parameters were updated and two iterations were performed.

Lastly, speaker adaptive training (SAT) was applied using
constrained maximum likelihood linear regression (CMLLR)
transformations. The same HLDA global transform was used
for the CMLLR transform estimation, and the CD AMs were
updated twice – again only weights and means.

The decoding task was a two-step process: the HLDA
CD AMs were used to automatically generate transcriptions
and a speaker-based CMLLR transform estimated. Then, the
CMLLR was applied on the second decoding pass.

All ASR related-tasks were performed using HTK [12]
and gender-dependent models were trained. A bi-gram back-
off language model was trained on all the training text data,
found in the customised English Fisher corpus detailed in
section III-A.

E. Topic classifiers

1) Weighted term frequency: Support vector machines have
been used previously to perform accurate topic identification,
as reported in [6], [1], [7]. General topic identification SVM
features are weighted word frequency values, such as the

term frequency inverse document frequency (TF-IDF) features,
which weights a term’s frequency, found within a document, by
a logarithm transformed cross-document term frequency. An-
other aspect of using the TF-IDF, is that a document containing
N words is converted to a term (usually words) vector of length
M , where M is the vocabulary size. Thus, arbitrary length
documents are all normalised to a consistent length. Lastly, to
improve the classification accuracy, a stop-word list is used to
reject words with low topic discriminative information. These
stop-words are usually articles, conjunctions and auxiliary
verbs.

In this investigation, however, a simpler weighted term
frequency vector was used. Firstly, a super vector of terms was
created. To do this, all documents belonging to a specific topic
were grouped into single topic-specific document and a single
background document containing all topics was created. Next,
for each word, the frequency of occurrence within a topic (fi)
and across all topics (fall) was calculated. All words with a
ratio between the within-topic term frequency and cross-topic
term frequency less than 0.1, fi

fall
< 0.1, were rejected. This is

similar to the approach followed by Hazen [4], where they used
an automatic process to create a stop-word list. Following this,
for each topic, a topic-specific term vector was created by using
only a limited number of the words – the words were ordered
by their frequency of occurrence and the top number of words
selected. Finally, a super vector was created by concatenating
all the frequency values found across the topic term vectors.

To train the SVM and predict unseen documents, a feature
vector for each document was created by calculating the
within-document word frequencies for all words found in the
super vector. For this investigation the top 5, 10 and 20 words
per topic were chosen – this relates to a super vector of 200,
400 and 800, respectively. The SVM used radial-basis function
kernels and a grid search was performed on the development



dataset, to find the optimal parameters. LibSVM toolkit was
used to train and evaluate the SVMs [13].

2) Language models: The N-gram language model (LM)
provides a method for estimating the probability of a word
sequence, which is estimated on written text data. The per-
plexity measure gives an indication on how well a N-gram
model predicts a text sample. If we assume that topics produce
different word sequences, then it may be possible to perform
topic identification using topic-specific N-gram models – se-
lect the N-gram model that produces the lowest perplexity.
Given this assumption, the viability of topic-specific N-gram
language modelling was investigated.

To produce topic-specific N-gram LMs, all topic-related
documents were concatenated into a single document. Ad-
ditionally, a “background” document, containing all training
text data, was created and used to estimate a background N-
gram LM. Then, for each topic, a N-gram LM was created by
interpolating from the background LM, using the topic-specific
documents. For this investigation, tri-gram back-off LMs with
fixed Kneser-Ney smoothing were developed. The MIT-LM
language modelling software was used [14] to develop the
various LMs.

3) SLDA: SLDA makes use of provided topic labels to
estimate the LDA model parameters in a supervised manner.
The SLDA models were estimated using an implementation
provided by Wang [15]. The model parameters were estimated
on the combined training text data. A light preprocessing was
performed similar to that detailed in section III-E1 where,
words were rejected if the ratio between the within-topic word
frequency and cross-document word frequency was less than
0.05. Out-of-vocabulary words were ignored. A linear search
was performed to find the optimal model parameters using the
development dataset.

IV. EXPERIMENTAL RESULTS

In this section, the ASR system performance and closed-set
topic identification rates are reported.

A. Speech recognition word error rates

Table II shows the WER for gender-dependent recogni-
tions obtained on the development and evaluation sets of the
customised Fisher corpus. There is about a 4-5% absolute
difference in the WERs, when comparing the female to male
results for both the development and evaluations sets. This
difference is most likely caused by the telephone channel
bandwidth restrictions, which seems to affect female speech
more than male speech.

TABLE II. WERS OBTAINED ON THE DEVELOPMENT AND
EVALUATION SETS OF THE CUSTOMISED FISHER CORPUS, FOR THE

GENDER-DEPENDENT ASR SYSTEMS.

WER
Female Male Average

Dev 54.91 59.72 57.32
Eval 55.44 59.77 57.61

It should be noted that the average WER achieved by the
gender-dependent ASR systems was around 57%, which is
larger than the WERs reported by Hazen et. al. [6] (around

40%) and Wintrode and Kulp [7] (around 30-50%). The
difference in the WERs may be due to a few factors such
as acoustic modelling techniques, the amount of data used to
develop the acoustic models or the use of more robust language
models.

B. Topic identification

Table III shows the closed-set topic identification error rates
for LM, SVM, and SLDA approaches. The LM approached
achieved an error rate of roughly 47%, for both the devel-
opment and evaluations sets. In contrast, if the orthographic
transcriptions were used instead of the recognised text, then the
LM approach produced results of 11.14% and 12.96% for the
development and evaluation sets, respectively. This highlights
that the LM is extremely sensitive to the high WER delivered
by the ASR systems.

TABLE III. CLOSED-SET TOPIC IDENTIFICATION ERROR RATES
OBTAINED BY THE VARIOUS TOPIC CLASSIFIERS.

Approach Dev Eval
LM (trans.) 11.14 12.96

LM 47.85 47.55
SVM Top 5 26.75 28.15
SVM Top 10 21.86 24.55
SVM Top 20 20.17 22.40

SLDA 17.1 17.6

The term-weighted SVM results show a consistent im-
provement, as the number of top words per topics were in-
creased for each topic. A better performance may be achieved,
if a greater number of top words per topic is chosen but this
does introduce an increase in training and prediction times. The
evaluation error rates are relatively close to the development
set results, roughly 2% absolute, which implies the model
parameters seem robust across differing datasets.

The SLDA approach produced the lowest error rate at
17.6%, which is significantly better than the LM approach.
A significant improvement is also observed when compared to
the SVM Top 20 approach, around 5% absolute.

V. CONCLUSION

The investigation into spoken audio topic identification has
shown, that the system can make use of ASR recognisers, with
high WER, and, still produce comparable topic identification
error rates, using standard topic modelling and identification
approaches, which is agreement with previously published
work.

The language model topic classifier approach produced
the worst results and is sensitive to the ASR recognition
errors, which may be a result of poor topic-representative word
sequences produced by the recognisers. The term-weighted
SVM approach showed consistent improvements as the number
of top words per topic were increased, but never out-performed
the SLDA classifier, which gave the best results.

For the 0.1xRT experimental results reported in Wintrode
and Kulp [7], the ASR system had a WER of 47% and
produced a topic identification error rate of 19.2%. The SLDA
results of 17.6%, at an ASR WER of 57%, are therefore
comparable to that of the term-weighted SVM topic models.
The best performing simplified term-weighted SVM (SVM



Top 20), used in this investigation, produced results that are
also in the region of the topic identification error rates.

VI. FUTURE WORK

The results presented by Wintrode and Kulp [7] show that
there is a correlation between the WER and topic identification
error rates. Therefore utilising better acoustic modelling tech-
niques and more robust language models would help somewhat
in reducing the topic identification error rates. Implementing
ASR system adaptation, as used in Wintrode and Kulp [7], can
also help to improve the performance.

During text processing of the conversations, a few interest-
ing trends were noticed: the two callers were asked to discuss a
certain topic for ten minutes, however, the following deviations
were observed;

• Each call had an introduction and concluding phase
not relevant to the topic at hand.

• The callers often drifted to different topics during the
course of the conversation.

The topic modelling results show that the SLDA approach
absorbed these artefacts quite well but employing text process-
ing techniques, to the training and recognition texts, to partly
isolate these regions may improve the results.

REFERENCES

[1] N. Pansare, C. Jermaine, P. J. Haas, and N. Rajput, “Topic models over
spoken language,” in IEEE International Conference on Data Mining
series (ICDM), Brussels, Belgium, December 2012, pp. 1062–1067.

[2] J. D. Mcauliffe and D. M. Blei, “Supervised topic models,” in Twenty-
First Annual Conference on Neural Information Processing Systems,
Vancouver, B.C., Canada, December 2008, pp. 121–128.

[3] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval. Berkeley, USA: ACM, August
1999, pp. 50–57.

[4] T. J. Hazen, “Latent topic modeling for audio corpus summarization,”
in Proceedings of Interspeech. Florence, Italy: ISCA, August 2011,
pp. 913–916.

[5] D. Blei and J. Lafferty, “Topic Models,” in A. Srivastava and M. Sa-
hami, editors, Text Mining: Classification, Clustering, and Applications.
Chapman & Hall/CRC Data Mining and Knowledge Discovery Series,
2010.

[6] T. J. Hazen, F. Richardson, and A. Margolis, “Topic identification
from audio recordings using word and phone recognition lattices,” in
Automatic Speech Recognition and Understanding, 2007. ASRU’07.
2007 IEEE Workshop on. Kyoto, Japan: IEEE, December 2007, pp.
659–664.

[7] J. Wintrode and S. Kulp, “Confidence-based techniques for rapid
and robust topic identification of conversational telephone speech,” in
Proceedings of INTERSPEECH. Brighton, United Kingdom: ISCA,
September 2009, pp. 1471–1474.

[8] C. Cieri, D. Miller, and K. Walker, “The Fisher Corpus: a Resource for
the Next Generations of Speech-to-Text,” in Proceedings of the Lan-
guage Resources and Evaluation Conference (LREC), vol. 4, Lisbon,
Portugal, May 2004, pp. 69–71.

[9] C. M. University, “The Cmu pronouncing Dictionary,” 2014. [Online].
Available: http://www.speech.cs.cmu.edu/cgi-bin/cmudict

[10] J. Novak, D. Yang, N. Minematsu, and K. Hirose, “Initial and evalua-
tions of an open source WFST-based phoneticizer,” The University of
Tokyo, Tokyo Institute of Technology.

[11] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based state tying
for high accuracy acoustic modelling,” in Proceedings of the workshop
on Human Language Technology. Association for Computational
Linguistics, 1994, pp. 307–312.

[12] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and P. Wood-
land, “The HTK Book. revised for HTK version 3.4,” March 2009,
http://htk.eng.cam.ac.uk//.

[13] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[14] B.-J. Hsu and J. Glass, “Iterative language model estimation: efficient
data structure & algorithms,” in Proceedings of Interspeech, vol. 8,
Brisbane, Australia, September 2008, pp. 1–4.

[15] C. Wang, “Supervised latent Dirichlet allocation for classification,”
2014. [Online]. Available: http://www.cs.cmu.edu/ chongw/slda/


