REMOTE SENSING RESEARCH FOR SPATIAL ASSESSMENT OF WOODY STRUCTURE IN AFRICAN SAVANNAHS & WOODLANDS – PAST, ON-GOING, AND FUTURE WORK BY THE CSIR

MATHIEU R.1, NAIDOO L.1, CHO M.1, WESSELS K.2, ASNER G.P.3

1Council for Scientific and Industrial Research (CSIR), Natural Resources and the Environment, Ecosystems- Earth Observation, P.O. Box 395, Pretoria, 0001, South Africa.
2Council for Scientific and Industrial Research (CSIR), Meraka Institute, Remote Sensing Research Unit, P.O. Box 395, Pretoria, 0001, South Africa.
3Carnegie Institution for Science, Stanford, CA, USA

rmathieu@csir.co.za, lnaidoo@csir.co.za, kwessels@csir.co.za, mcho@csir.co.za, gpa@stanford.edu

Introduction:

- Appropriate techniques are needed to monitor woody vegetation cover, biomass and carbon stocks
- Important for energy security of rural communities in Africa, climate change & REDD+ program, & ecosystem processes
- Light Detection and Ranging (LiDAR) & Synthetic Aperture Radar (SAR) interact with vegetation morphology and structure
- Aim: To assess and demonstrate the available remote sensing techniques, implemented in recent CSIR research, which can be utilized to map vegetation structural parameters at various scales

Box 1: LiDAR (Laser altimeter)

- Emits highly repeating laser pulse of given size or footprint and time resolution (discrete vs waveform)
- Based on laser returns detailed structural information can be attained on vegetation structure:
 - Tree height (from Digital Surface & Ground Models)
 - Canopy shape & architecture
 - Woody cover
 - Vertical tree profiles (from pseudo-voxel analysis (Asner et al, 2007)
 - Biomass models

Box 2: LiDAR Studies and Examples

- The change in vegetation structure resulting from rural resource extraction was investigated by Fisher et al (2009) and Wessels et al (2009)

Savannah vertical tree profile

Tree height image

Conclusions:

- Appropriate technology and guidelines still need to be researched to move one step closer towards the development of woody structure products for effective savanna & woodland management
- This research is on-going and is a key area of interest for the CSIR Ecosystems Earth Observation unit

Box 3: SAR, Products & Studies

- E.g. of spaceborne satellites: RADARSAT 1-2; ENVISAT-ASAR; ALOS-POLSAR & TerraSAR-X

- Permits the usage of various analytical techniques:
 1) Interferometry (allows accurate measure of distance in the landscape e.g. tree height)
 2) Multi-frequency polarimetry (allows investigation of vegetation structure e.g. biomass).

Le Toan (2007)

References

Mathieu R; Mathieu L; Leblon X; Mathieu A; Mathieu B; Mathieu C; Leblon J; Mathieu D; Mathieu M; Mathieu P; Mathieu M (2010). Potential of polarimetric RADARSAT-2 C-band SAR imagery to map woody vegetation composition structure in African savannas. Remote Sensing of Environment, Vol 114, Pages: 2282-2299

Box 4: Multi-angle optical technique

- E.g. Coarse scale Multi-Angle Imaging Spectroradiometer

- Use Bidirectional Reflectance Distribution Function principles and multi-angle view points of several cameras on board of satellite (forward, nadir, backward) to extract structure