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ABSTRACT

Considering the quantum state produced in type I spontaneous parametric down-conversion with collinear,
degenerate signal and idler beams, and a Gaussian pump, we show that the azimuthal Schmidt number in the
Laguerre-Gaussian (LG) basis increases when the radial indices of the LG modes detected in the signal and
idler beams are different. These observations are confirmed by the good agreement between theoretical and
experimental results. The theoretical results are obtained by deriving expressions for the probability amplitude
to detect LG modes with any combination of azimuthal and radial indices in a down-converted photonic quantum
state.
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1. INTRODUCTION

Entanglement is a distinct phenomenon of quantum mechanics. A proper understanding and use of entanglement
can lead to significant technological advances in communication, computing and cryptography.1 In recent years
there has been much interest in the entanglement among optical modes that carry orbital angular momentum
(OAM).2 These modes are capable of carrying large amounts of information due to the infinite-dimensional nature
of OAM and thus are of significant interest for quantum information. Pairs of photons entangled in OAM can
be readily produced through spontaneous parametric down-conversion (SPDC).3–5 The degree of entanglement
of a quantum state can be quantified by calculating the Schmidt number.6 When restricted to the OAM degrees
of freedom (by fixing the radial degrees of freedom) the equivalent quantity is called the azimuthal Schmidt
number, which is also an indication of the width of the OAM spectrum, i.e. the spiral bandwidth.6–10 Hence, a
large spiral bandwidth indicates that an OAM entangled quantum state contains more OAM degrees of freedom
that can be used to encode quantum information.

The Laguerre-Gaussian (LG) modes are OAM eigenstates and are a popular basis for photonic quantum
information application. They also carry a radial index (p), which governs their radial dependence. It has been
shown6,11 that both azimuthal and radial degrees of freedom are required to saturate the full Schmidt number of a
quantum state produced by SPDC. Nevertheless, the radial degrees of freedom are often neglected, summed over
or fix to their simplest case p = 0. It has been shown that the azimuthal Schmidt number depends on the radial
dependence of the chosen basis state and that the azimuthal Schmidt number obtained from Bessel-Gaussian
(BG) modes, which are also OAM eigenstates, are larger than for LG modes.12

Here we investigate, theoretically and experimentally, how the azimuthal Schmidt number depends on the
chosen radial dependence for an LG basis. For this purpose the radial indices are fixed to arbitrary values in
the signal and idler beams, respectively. We restrict the analysis here to the case of degenerate collinear type I
SPDC with a Gaussian pump. The results were also published in Ref. 13.

Further author information: (Send correspondence to Yingwen Zhang)
Yingwen Zhang: E-mail: YZhang@csir.co.za

Quantum Communications and Quantum Imaging XII, edited by Ronald E. Meyers, Yanhua Shih, 
Keith S. Deacon, Proc. of SPIE Vol. 9225, 92250D · © 2014 SPIE

CCC code: 0277-786X/14/$18 · doi: 10.1117/12.2063222

Proc. of SPIE Vol. 9225  92250D-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms



2. THEORY

2.1 Coincidence amplitude

The coincidence counts in a SPDC experiment are proportional to the modulus square of the down-converted
probability amplitude, |M|2 = |〈Ψf |P|Ψin〉|2, where P represents the SPDC process. For type I phase matching,
with degenerate signal and idler frequencies (ωs = ωi = ωd = ωp/2) and collinear signal and idler beams, the
probability amplitude in the paraxial limit is given by

M = Ω0

∫
M∗s (q1)M∗i (q2)Mp(q1 + q2)S(q1 − q2)

d2q1
(2π)2

d2q2
(2π)2

(1)

where Ω0 is an overall constant that determines the conversion efficiency, q = qxx̂+ qy ŷ is the two-dimensional
transverse part of the three-dimensional wave-vector k, the angular spectra of the mode profiles of the signal,
idler and pump beams are given by Ms(q), Mi(q) and Mp(q), respectively, and S(q1−q2) is the phase matching
function.

The pump beam is a Gaussian beam, so that

Mp(q) =
√

2πwp exp

(
−
w2
p

4
|q|2

)
, (2)

where wp is the radius of the pump beam waist.

The signal and idler beam profiles are LG modes. Here we represent the angular spectra of these LG modes
by

M `,p
s,i (q) = N 1

p!

[
∂pη∂

|`|
µ G
]
η,µ=0

, (3)

where G is the generating function for the LG modes,14 µ and η are generating parameters for the azimuthal
and radial indices, respectively, and

N =

[
2π2|`|p!

(p+ |`|)!

]1/2
. (4)

The generating function is given by

G =
1

1 + η
exp

[
i(qx ± iqy)wµ

2(1 + η)
−

(q2x + q2y)w2(1− η)

4(1 + η)

]
, (5)

where w is the radius of the beam waists and the sign in the exponent is given by the sign of `. For simplicity
we assume that the radii of the beam waists of the signal and idler beams are equal ws = wi = w.

The phase matching function is given by

S(q1 − q2) = sinc

(
βw2

p

8
|q1 − q2|2

)
, (6)

where we define sinc(a) = sin(a)/a and β is a dimensionless combination of parameters. The latter is given by

β =
noLλp
πw2

p

=
noL

zR
, (7)

where no is the ordinary refractive index of the nonlinear crystal, λp is the wavelength of the pump, L is the
crystal length and zR is the Rayleigh range.

The expression in Eq. (1) is a more general version of the integral considered previously.9 Instead of setting
the radial index to zero (p = 0) for both the signal and idler beams, we allow their radial indices to have arbitrary
values. Using the generating function for LG modes, we are able to solve the more general integral analytically.
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Evaluating the integral in Eq. (1), one finds that, unless the azimuthal indices of the signal and idler modes
have equal magnitudes and opposite signs, the result is zero. One can therefore set `s = −`i = `. So we rewrite
the generating function for explicit azimuthal indices, but leave the radial indices of the signal and idler beams
implicit in terms of their generating parameters ηs and ηi, respectively. The resulting generating function after
integration is given by

G` =
iα|`|+1

B|`|+1β

[
Z |`|+1Φ(−Z, 1, |`|+ 1)

−(Z∗)|`|+1Φ(−Z∗, 1, |`|+ 1)
]
, (8)

where Φ(z,m, n) is the Lerch transcendent function,15

Z =
(2− iβ)B
αA+ iβB

(9)

A = (1− ηs)(1− ηi)α+ 2(1− ηsηi) (10)

B = 2(1 + ηs)(1 + ηi) + (1− ηsηi)α (11)

α =
w2

w2
p

, (12)

and β is defined in Eq. (7). Note that the generating parameters for the radial indices of the signal and idler
beams are only found inside A and B. To obtain the probability amplitude for particular radial indices p and q
of the signal and idler beams, respectively, one evaluates the following operation

M =
Ω0

wp
Npq

[
∂pηs∂

q
ηiG`

]
ηs,ηi=0

, (13)

where

Npq =

[
2(|`|!)2

π(p+ |`|)!(q + |`|)!p!q!

]1/2
. (14)

For the p = 0 case, one sets ηs = ηi = 0. As a result A = B = 2 + α and the expressions simplify to those
obtained by Miatto, et al.10

2.2 Thin crystal limit

All the experimental parameters are contained in the dimensionless parameters α, Eq. (12), and β, Eq. (7). The
latter is the ratio of the nonlinear crystal length L to the Rayleigh range of the pump beam zR. In most practical
experiments L� zR . As a result β � 1. In this limit, the probability amplitudeM can be expressed, to second
order in β, as

M =
Ω0

wp
Npq

(
2

A

)|`|+1

+ O
(
β2
)

(15)

In the case where β = 0, the argument of the phase matching function in Eq. (6) becomes zero, with the
result that the phase matching function is equal to 1. As a result, one can Fourier transform Eq. (1) to the
coordinate domain. The result is a three-way overlap integral, given by

M = Ω0

∫
mp(x)m∗s (x)m∗i (x) d2x, (16)

where mp,s,i(x) represents the mode profile of the pump, signal or idler beam.
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2.3 Schmidt number

To quantify the bandwidth of the spectrum of OAM modes we use the azimuthal Schmidt number, which is
defined by

κ =
1∑
` P

2
`

(17)

where P` represents the probability to observe a particular pair of OAM modes for a given set of p-indices. It
is proportional to the modulus square of the probability amplitude. The coincidence counts C` obtained in the
experiment are proportional to the probabilities P`. Hence, the azimuthal Schmidt number can be computed by

κ =
(
∑
` C`)

2∑
` C2`

. (18)

3. EXPERIMENT

3.1 Experiment setup

The experimental setup is shown by the diagram in Fig. 1. A 350 mW pump laser with a wavelength of 355 nm
traverses a 3 mm-thick BBO crystal to produce degenerate, collinear photon pairs with type I phase-matching,
which are entangled in their OAM degrees of freedom. The beam size of the pump mode profile on the plane of
the BBO is 1 mm. The signal and idler beams are separated using a 50/50 beam splitter. Each beam is directed
onto a spatial light modulator (SLM) that is used to modulate the beam by the conjugate of the mode which is
to be detected. Type-3 complex amplitude modulation given in16 is used to generate the hologram on the SLMs,
the LG mode size used on the hologram is 0.575 mm. The modulated beams are coupled into single mode fibres
(SMFs), which extract the Gaussian profile from the beams. The beam size of the Gaussian mode of the SMF,
imaged back onto the BBO crystal, is 0.575 mm. Avalanche photo diodes (APDs) that are connected to the
other ends of these SMFs, register the photon pairs via a coincidence counter (CC).

50/50 beam
splitter

Laser

BBO A

B

SLM

SLM

SMF

SMF

CC

APD

APD

Signal

Idler

Figure 1. Diagram of the experimental setup used to prepare and measure the OAM entangled photon pairs.

3.2 Modelling the experiment

Due to the experimental parameters of the setup, β = 0.0023, which means that one can work in the thin crystal
limit and use Eq. (16) to model the experiment. The SLMs are usually used to implemented the functions of
ms(x) and mi(x), using complex amplitude modulation.16 However, the coupling of the beams into the SMFs
imply that the integrand must also contain the Gaussian modes of these SMFs. One can therefore express the
actual overlap integral that is implemented by the experiment as

M = Ω0

∫
mp(x)m∗s (x)m∗i (x)G2(x) d2x, (19)

where

G(x) =

(
2

π

)1/2
1

w0
exp

(
−x

2 + y2

w2
0

)
(20)
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Figure 2. Intensity plot of the azimuthal Schmidt number κ calculated using Eq. (16) for p, q running from 0 to 10
showing the difference before and after the SMF Gaussian profiles are taken into account. (a) shows the Schmidt numbers
calculated without taking into account the SMF Gaussians and (b) with the SMF Gaussians. The parameters used here
for the calculations are the same as the experimental parameters namely wp = 1 mm, w = 0.575 mm and w0 = 0.575 mm
giving α = 0.331 for (a) and α = 2.34 for (b).

is the mode of the SMF, with radius w0 when imaged onto the nonlinear crystal. Since the pump is also a
Guassian function, the effect of these extra Gaussian functions is to modify the effective mode size of the pump

exp

(
−x

2 + y2

w2
p

)
→ exp

(
−x

2 + y2

(w′p)
2

)
, (21)

where
1

(w′p)
2

=
1

w2
p

+
2

w2
0

. (22)

The effective mode size of the pump is smaller than the mode size of the original pump beam. To take the
effect of the SMF Gaussian profiles into account in the theory, one merely needs to replace wp → w′p in the
expressions in Sec. 2. It was found that if one does not take the effect of these SMF Gaussian profiles into
account, the theoretical results differ significantly from the experimental results as can be seen in Fig. 2, which
shows the azimuthal Schmidt number κ calculated theoretically before and after the SMF Gaussians has been
taken into account.

One could in principle modify the modes on the SLMs to compensate for the extra Gaussian profiles coming
from the SMFs. However, in practice this can only work if the radial functions of the modes on the SLMs are
scale invariant, as in the case of the LG modes with p = 0.

3.3 Experimental results

Figure 3 (a) shows an intensity plot of κ measured experimentally for p and q combinations running from 0 to
5. The diagonals of Fig. 3 (a) are shown in Fig. 3 (b) and (c) which also compares the experimentally measured
κ to that determined theoretically. From Fig. 3 it can be seen that κ increases with larger p and q values and
also when |p− q| grows larger.

In general the experimental results agrees with theory, however, in Fig. 3 (b) one sees that the errors in the
data grows very large at large |p − q|, and in Fig. 3 (c) the growth in κ with p for the experimental results is
slightly slower than that of the theoretical. These effects can be explained if one take a look at Fig. 4 which shows

Proc. of SPIE Vol. 9225  92250D-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/05/2014 Terms of Use: http://spiedl.org/terms



0 1 2 3 4 5
0

1

2

3

4

5

A
zim

uthal S
chm

idt no.

 

p

 

q

3

4

5

6

7

8

9
(c)(b)

(a)

−5 −3 −1 1 3 5
0

2

4

6

8

10

p − q

A
zi

m
ut

ha
l S

ch
m

id
t n

o.

p + q = 5

(b)

0 1 2 3 4 5
0

2

4

6

8

10

p

A
zi

m
ut

ha
l S

ch
m

id
t n

o.

p = q

(c)
Figure 3. (a) Intensity plot of the azimuthal Schmidt number κ determined experimentally for radial indices p and q
running from 0 to 5. (b) and (c) shows the experimental results (dots) compared to the theoretical results (line) along
the diagonals indicated by the arrows in (a). Error bars corresponds to one standard deviation.

the intensity graphs of the experimentally measured coincidence count rate C` (Fig. 4 (a)), and the normalized
probability amplitude P` determined theoretically (Fig. 4 (b)) at ` = 5.

One sees in Fig. 4 (a) that C` is small when |p−q| is large, in fact it never exceeded 3 counts per second (with
background subtracted) at the two corners where |p − q| = 5 for any `’s. This results in the very large error
bars seen in Fig. 3 (b). Apart from the increase in the size of the error bars, we also see a larger disagreement
between theory and measured results at the end points of the curve in Fig. 3(c). This disagreement is believed
to be caused by a reduced fidelity of the modal function on the SLM when using intensity masking to represent
the mode. Due to the limited resolution of the SLM, modal functions with larger p and ` indices are rendered
with less accuracy, compared to those with smaller p and ` indices.

From the above results, we see that, with our experimental parameters, the combination of radial indices
that gives the optimal spiral bandwidth, while maintaining good beam quality and acceptable coincidence count
rates, are for p and q equal to 1 and 3 (or 3 and 1). The resulting value of the azimuthal Schmidt number κ is
approximately 3 times that at p = q = 0.

4. CONCLUSION

The effect of the radial index of the LG basis on the spiral (OAM) bandwidth of down-converted photon states
were investigated. It is shown, both theoretically and experimentally, that, when the radial index of the signal and
idler beams are different, the spiral bandwidth tends to increase. In other words, although the diagonal modes
(those with the same radial indices for the signal and idler beams) are dominant, the off-diagonal modes give
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Figure 4. (a) Coincidence count rate C` measured experimentally and (b) normalized probability amplitude P` determined
theoretically for p and q running from 0 to 5 with ` = 5.

larger spiral bandwidths. The experimental setup in this case employs type I SPDC with collinear, degenerate
signal and idler beams, and a Gaussian pump.

For the purpose of the theoretical analysis we obtained analytic expressions for the probability amplitude to
detect photon pairs with arbitrary LG modes. Using generating functions for the LG modes, we were able to
obtain expressions that apply for any combination of azimuthal and radial indices. For the case when the radial
indices are set to zero, our expressions agree with those found in previous work.5,9, 10

Using these expressions we calculated the azimuthal Schmidt number for different combinations of signal and
idler beam radial indices and compared them with the experimentally measured azimuthal Schmidt numbers.
The agreement between theory and experiment is fairly good provided the radial indices are not too large (p . 5)
and the difference between the signal and idler radial index is small (|p − q| . 3). We also demonstrated that
it is possible to obtain up to a threefold increase in the azimuthal Schmidt number without a significant loss in
coincidence count rate.

To be able to model the experimental setup accurately it is also important that the effect of the Gaussian
modes of the SMFs are taken into account in the overlap integral.
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