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ABSTRACT 

 

Southern African savanna ecosystems and their woody resources 

are under pressure. Governments in the region need locally 

calibrated, cost effective, and regularly updated information on 

these resources in order to satisfy both national and international 

commitments to manage them. Using LiDAR data as a calibration 

dataset, this paper sets out to investigate the potential of hyper-

temporal C-band ASAR SAR data in mapping woody structural 

related parameters in a savanna environment. Images spanning 

three years where grouped by years (2007-2009), season (Wet or 

Dry) and polarization (HH or VV), and relationships were sought 

for the woody parameter total canopy cover (TCC). Results show 

that: Dry season combinations of images outperformed wet season 

images; HH co-polarised images outperformed VV images; 

temporally filtered images showed marked improvement on 

unfiltered images. While non-parametric random forest models 

achieved better validation accuracies than other models did. The 

single best result was achieved by combining all the temporally 

filtered images, from all of the various scenarios (R2=0.74; 

RMSE=8.52; SEP=35.27). The results show promise in delivering 

regional scale, locally calibrated, baseline products for the 

management of Southern Africa’s woody resources. 

 

Index Terms— Cover, Savanna, ASAR, Hyper-temporal, C-Band 

 

1. INTRODUCTION 

 

Savanna ecosystems are ecologically and economically significant 

systems that are defined by a continuous herbaceous layer 

interspersed with trees [1], [2]. They cover more than 30% of the 

worlds vegetated land surface, and more than half of the African 

continent, thereby providing millions of mostly poorer households 

with the materials they need in order to buffer the full effects of 

poverty[2].  Woody resources hold great carbon sequestration 

potential, but are facing over-utilisation in some regions, while in 

others their encroachment threatens the availability of viable 

grazing land.  The (potential) impacts of these combined pressures 

on woody resources in the Southern African region need to be 

monitored in order to avoid significant losses, both in terms of  

associated ecosystem services, and the livelihoods dependant them. 

This requires being able to accurately measure, report, and verify 

available woody resources in order that they are sustainably 

managed. 

To date, the most up-to-date information of this kind are in the 

form of global products, which are poorly calibrated outside of 

boreal and tropical forest environments and show poor accuracies 

for regions such as Southern Africa.  

Space-borne synthetic aperture radar (SAR) sensors have had 

success in measuring and mapping woody vegetation over large 

areas of interest, largely due to the canopy penetration capabilities 

of the SAR signal, as well as its ability to capture data despite the 

presence of cloud cover. C-band SAR has proven capable of 

reliably estimating certain forest parameters (in tropical and boreal 

forests) when multi-date data are used. The inclusion of temporal 

data is theorised to increase the contribution of the SAR signal 

from vegetation while reduce or smooth the signal from other 

backscatter sources [3]. Recent studies have provided promising 

results (i.e. R2=0.69-0.75) when using repeat pass C-band imagery 

to relate backscatter to savanna woody structural parameters (i.e. 

canopy volume, and cover) [4].  

Whereas the aforementioned studies used small footprint, high 

resolution, commercial C-band sensors (e.g. RADARSAT2), there 

remains a need in savanna woodlands to establish the estimation 

protocols necessary for more regional scale assessments using 

affordable coarse resolution sensors. The (decommissioned) 

ENVISAT ASAR archive data holds the potential of delivering 

locally calibrated baseline (woody structure) products to 

government agencies that have only ever had access to global 

models (i.e. MODIS VCF).  These baseline products can then act 

as points of departure for exploiting data produced by the new 

ESA SAR C-band sensor (Sentinel-1) launched early 2014. 

Using the hyper-temporal ASAR C-band data, the objectives of 

the study were to explore specific scenarios under which the SAR 

data had the strongest relationships with woody cover in a savanna 

environment. Scenarios tested comprised of images that were a) 

temporally filtered or unfiltered, b) single year or multi-year 

combinations, c) split into wet, dry or multi-season, and/or d) split 

into co-polarised HH, VV or a combination of both 

 

2. STUDY AREA AND METHODS 

 

The study area is situated in the Lowveld region of the savanna 

biome at the north-eastern edge of South Africa. Rainfall primarily 



occurs in the summer months between October and May. The 

range of woody canopy cover can be from 5% in the open savanna, 

to 60% in woodland areas, and 80% in riparian areas [5]. 

Airborne LiDAR data was used to calibrate and validate 

predictive SAR models for total woody cover. The LiDAR data 

totalled approximately 35 000 ha, and was flown over various sites 

within the study area during April-May 2008 using the Carnegie 

Airborne Observatory (CAO) Alpha system [6]. Total canopy 

cover (TCC) was calculated as the percentage area that is occupied 

by woody vegetation (woody plants > 0.5m in height).  

The hyper-temporal SAR data consisted of 55 irregularly timed 

Envisat ASAR wide-swath mode images (~70x76m resolution) 

acquired between January 2007 and December 2009. Given the 

scarcity of multi-year LiDAR acquisitions, it was assumed that 

there was little significant change in the total woody cover of the 

area from when the LiDAR was acquired (i.e. 2008), and therefore 

SAR data from the preceding (i.e. 2007) and subsequent (i.e. 2009) 

years could be used to build a hyper-temporal dataset and relate it 

to the LiDAR. The 55 images consisted of 22 wet (November to 

April) and 33 dry (May to October) season images, as well as both 

available polarisations, namely HH (44 images) and VV (11 

images). Each image was radiometrically and geometrically pre-

processed using GAMMA software, masked to the study area, and 

resampled to 75m x 75m. All the chosen images had 100% 

coverage of the region of interest. 

We considered a number of different modelling scenarios, 

which included single or multi-year combinations (2007, 2008, 

2009), different seasons (wet (W), dry (D) or both), and 

polarisations (HH, VV, or both). Images of different polarisations 

or seasons were not mixed; so it was only in the modelling of these 

different scenarios that the seasons or polarisations were combined 

(i.e. scenarios “HHVV” or “WD”).We also considered scenarios 

where the images were either unfiltered or were temporally filtered, 

after [7]. The temporal filter sets out to linearly combine images of 

a given time series, in order to create a new set of speckle reduced 

images. The filter uses the input intensity data, as well as a local 

mean backscattering coefficient that is estimated in a window 

around each pixel[7]. The filter serves to reduce the variance (i.e. 

speckle) within the image, while preserving both radiometric and 

spatial resolution. Temporal filtering of image stacks can be 

negatively influenced by sporadic and episodic rainfall or fire 

events. Heavy rainfall events would increase the soil moisture 

effects on the SAR signal, and result in artificially high values, 

while fire events would remove significant amounts of vegetation. 

By colour compositing images from different dates, we visually 

assessed the images for obvious signs of these events and removed 

the necessary images from both the unfiltered and filtered analyses. 

Three different filter windows sizes were tested, namely 3x3, 7x7, 

and 11x11 pixels  

The sampling approach followed the “block” spatial 

aggregation method [4], whereby a grid of 150m polygons, spaced 

75m apart, were used to extract data from each of the LiDAR and 

SAR datasets. After splitting the sample dataset (n=3852) into 35% 

training and 65% test, the multi-linear and random forest 

regression models were used to predict TCC using the different 

SAR scenarios.  

 

3. RESULTS & DISCUSSION 

 

In Table 1 a subset of the accuracies for the different SAR 

scenarios in predicting the LiDAR metric (TCC) are presented, and 

ranked by increasing RMSE. Only the multi-year scenarios are 

presented here, as no single year scenario outperformed its multi-

year equivalent. The non-parametric random forest model 

(ntrees=500, mtry=sqrt[no. variables]) produced only slightly 

better accuracies than the linear model throughout the study. There 

are bigger differences between the different image scenarios than 

there are between the different models. The improved performance 

of the random forest method is to be expected as the SAR and 

LiDAR metric relationship is slightly non-linear, and likely to 

saturate towards the top end of the range.  

 

Table 1: Modelling results for TCC under different filtering 

treatments, and image scenarios. The scenarios are defined by 

year (2007-2009), polarisation   (HH or VV), or season (W or 

D). 

Scenario R
2

RMSE SEP R
2

RMSE SEP Variables

2007to2009_HHVV_WD 0.64 9.94 41.16 0.65 9.86 40.85 55

2007to2009_HHVV_D 0.60 10.49 43.19 0.62 10.14 41.75 33

2007to2009_HH_WD 0.61 10.29 42.65 0.62 10.25 42.47 44

2007to2009_HH_D 0.58 10.75 44.40 0.60 10.57 43.67 26

2007to2009_VV_WD 0.50 11.72 49.28 0.58 10.62 44.64 11

2007to2009_VV_D 0.49 11.98 49.62 0.56 10.95 45.35 7

2007to2009_HHVV_W 0.49 11.78 48.66 0.51 11.57 47.79 22

2007to2009_HH_W 0.44 12.32 50.63 0.45 12.27 50.42 18

2007to2009_VV_W 0.24 14.70 60.07 0.32 13.61 55.60 4

2007to2009_HHVV_WD 0.72 8.70 36.00 0.74 8.52 35.27 55

2007to2009_HH_WD 0.70 9.11 38.09 0.72 8.80 36.81 44

2007to2009_HHVV_D 0.68 9.44 38.82 0.70 9.15 37.62 33

2007to2009_HH_D 0.66 9.60 39.56 0.68 9.31 38.39 26

2007to2009_VV_WD 0.65 9.81 40.83 0.67 9.48 39.43 11

2007to2009_VV_D 0.62 10.20 41.76 0.65 9.74 39.88 7

2007to2009_HHVV_W 0.59 10.61 44.31 0.64 10.00 41.74 22

2007to2009_HH_W 0.55 11.06 45.57 0.63 10.05 41.38 18

2007to2009_VV_W 0.42 12.60 53.01 0.44 12.30 51.75 4

TCC

Linear Regression Random Forest

Unfiltered

Temporal Filter (11x11)

 
*R2 = coefficient of determination; SEP = Standard error of 

prediction (%); RMSE = Root mean square error (%) 

 

For both the unfiltered and filtered treatments, the scenario that 

included the images from all three years, both polarisations (HH 

and VV), and both seasons (W and D) produced the best results 

(i.e. 2007to2009_HHVV_WD). Dry season scenarios, for all three 

combinations of polarisation (i.e. HHVV/HH/VV) consistently 

outperformed Wet season scenarios. Similarly, HH scenarios, for 

all three combinations of seasons (i.e. WD/D/W) generally 

outperformed the equivalent VV scenarios. The performance of the 

dry season images over the wet season images is consistent with 

other literature, which indicates dry, conditions to be the best for 

vegetation parameter estimation using SAR [3], [4]. This is partly 

due an increased transparency within the canopy that allows the 

SAR signal to penetrate further into the canopy and interact with 

the larger elements of the tree, as well as a decrease in the 



influence of soil or grass moisture contents [3].  “Leaf-off” 

conditions result in surface and single bounce scattering to be more 

prominent than in “leaf-on” conditions [4]. Co-polarised images 

(HH and VV) are more representative of surface scattering 

elements, as opposed to cross-polarised images (i.e. HV) being 

more representative of volume scattering, and are therefore able to 

produce the strong relationships as seen in Table 1.. 

The temporal filter acted to reduce the amount of variance (i.e. 

speckle) in the images, and in doing so improved upon the 

unfiltered prediction accuracies for TCC, in every scenario. Of the 

three filter window sizes tested (3x3, 7x7, and 11x11); only the 

best performing 11x11 window results are presented in Table 1. 

The performance of the filter is also evidenced in the increase of 

the equivalent number of looks (ENL) for the SAR images, which 

was ~11.5 for the unfiltered images, and became ~40 for the 

filtered images. The ENL is defined as the ratio between the 

squared mean and the variance of the intensity, and is often used to 

gauge the performance of speckle filters. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Observed versus predicted scatter plots for TCC, 

using temporally filtered images. 

The observed versus predicted scatter plots are presented in 

Fig. 2, for the best performing filtered image scenario 

(2007to2009_HHVV_WD). In comparison to the 1:1 line, it is clear 

that the TCC model is overestimating values at the lower end of the 

range, and underestimating values at the top end of the range.  

The underestimation in high cover areas can be explained by 

the C-band signals limited ability in penetrating a dense canopy 

[8]. The LiDAR coverage also had a limited amount of very dense 

vegetation which could be sampled; hence the top end of the TCC 

range is under-represented. At the lower end, limitations of the 

LiDAR in detecting very small vegetation would contribute to the 

overestimation [9], as would the interference and variability of soil 

textures and grass biomass in these low woody cover areas. 

In summary, the filtered multi-year combinations of images 

produced a marked improvement over unfiltered single year 

images. While there was also a clear improvement in making use of 

dry season images over wet season images, although the 

combination of the two seasons outperformed the equivalent 

scenario using one season (i.e. HH_WD outperformed HH_D). HH 

over VV scenarios show improvements to a lesser degree than the 

improvements shown between seasons, but again the combination 

of HH and VV images produced better results than the equivalent 

scenario using only one polarisation (i.e. HHVV_D outperformed 

HH_D).  From an operational point of view, in terms of producing 

regional scale products, the HH wet and dry season images 

produce good results and it may be worth weighing up a small gain 

in accuracy versus the time necessary to process the additional VV 

images.  

 

 

4. CONCLUSIONS 

 

We investigated the effectiveness of course scale, C-band, hyper-

temporal ASAR-WS imagery in extracting total canopy cover 

metrics in a Southern African savanna environment. The 

temporally filtered scenario that consisted of all the images, from 

each of the polarisations and seasons, produced the single best 

result (i.e. R2=0.74; RMSE=8.52). The results of the paper are 

encouraging, when considered in the context that neither the SAR 

wavelength (i.e. C-band), the spatial resolution (i.e.75m), nor the 

single polarisation (i.e. HH and VV) are known to be optimal SAR 

parameters for vegetation mapping, especially in an environment 

with high levels of spatial heterogeneity. This is where the hyper-

temporal dataset has contributed to off-set these disadvantages and 

produce results that show potential for regional scale mapping of 

woody parameters, which could form the baseline products from 

which future monitoring programmes will compare. The study is 

unique in its application of the methods to the above mentioned 

dataset in a woody savanna environment. The process of collecting 

additional LiDAR calibration data is under way in order to 

strengthen the models and investigate their performance in areas of 

higher cover, and that may be experiencing higher degrees of 

change (i.e. commercial forestry regions) Investigations are also 

under way to expand the current study to include further analysis 

on the performance of temporal filters in these environments, as 

well as to include additional LiDAR metrics such as total canopy 

volume (TCV) as an additional variable.  
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