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Abstract—Diffusion tensor imaging (DTI) and tractography
have opened up new avenues in neuroscience. As most appli-
cations require precise spatial localization of the fibre images,
image registration is an important area of research. Registration
is usually performed prior to tractography. However more
reliable images could be produced if a viable registration can
be performed post tractography. This study shows two available
techniques for direct registration of fibre images and explores
novel adaptations of these. The methods register volume images
derived from the fibres, and reapply the transformation from
these registrations to the fibre images. The first method is a local
affine registration and the second is a global affine registration.
The local affine method produced the best results with an average
increase in correlation of 0.13 (from 0.34 before registration) per
bundle as opposed to an increase of 0.04 for the global method.

I. INTRODUCTION

Diffusion tensor imaging (DTI) and tractography have
opened up new avenues in neuroscience and are allowing
previously unexplored areas of neuroanatomy and function
to be researched. The tractographic fibre images that result
from tractography have found applications in, amongst others,
surgical planning, reducing postoperative neurological deficit,
the development of white matter atlases and the ability to study
the relationship between structure and function in the brain
by allowing researchers to image connectivity. Most of these
applications require precise spatial localization of the images
which is achieved through image registration.

The vast majority of research and applications that use
tractographic fibre images register the DTI images prior
to tractography. DTI registration, which requires voxel re-
orientation apart from the normal spatial transformations, is
an actively researched and open problem. The fibre tracking
process itself accumulates errors along the tracts and thus is
sensitive to small changes in the DTI images. Thus registration
of the tractographic fibre images rather than the DTI images
may produce more accurate and less distorted images than
those produced from tractography based on registered DTI
images. This study investigates available techniques for direct
registration of fibre images and explores novel adaptations of
these.
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Fig. 1. Illustrations of (a) isotropic diffusion and (b) anisotropic diffusion.

II. BACKGROUND

A. Diffusion Tensor Imaging and Tractography

Diffusion tensor imaging (DTI) is a relatively new magnetic
resonance imaging (MRI) modality that enhances conventional
MRI to image the 3D structure of fibrous tissues [1], [2].
The properties of water diffusion in tissue enable this. Water
diffusion, whilst normally isotropic, is slightly inhibited by
cell membranes. In tissue made up of long, thin cells, i.e.
fibrous tissue, the diffusion of water becomes anisotropic as
water diffusion is inhibited across the cells but not along their
bodies [3]. Figure 1 illustrates the difference between isotropic
and anisotropic diffusion.

Diffusion affects MRI by lowering the signal intensity.
Originally considered a source of noise in MRI, diffusion
weighted images (DWI) can be created by measuring this loss
of signal from at least seven directions. A diffusion tensor
can be fit to each voxel of the DWI image to create a DTI.
This tensor gives the probability that water will diffuse in any
direction from that voxel. DTI images are used as a basis
to create a variety of different image types that are simpler to
interpret visually. Two common types are fractional anisotropy
(FA) maps and deterministic tractographic images. Figure 2
shows these image types.

FA is a measure of anisotropy and is defined as
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where λ1, λ2 and λ3 are the eigenvalues of the diffusion
tensor. Tractography is the process of tracking potential fibre



Fig. 2. A deterministic tractographic image of the cingulum superimposed
on a FA map showing a sagital section of the brain.

trajectories from the DTI images [4]. As the white matter
fibres of the brain follow convoluted trajectories, this type of
image is an invaluable aid to the understanding and interpre-
tation of their structure and orientation. Tractographic images
fundamentally differ from other MRI images in that they are
morphometric [5]. The images are not based on voxels but are
rather represented as a group of trajectories, each representing
a single fibre. Each fibre is an ordered set of 3D coordinates
in continuous space, spaced discretely along the fibre. This is
important as conventional image registration algorithms cannot
be applied directly to these sorts of images.

B. Image Registration

Registration is the process of transforming an image to
be as spatially aligned to a reference image as possible [6].
DTI images are almost always accompanied by images of the
same subject but differing in modality such as an FA map, a
conventional T2 MRI image or a functional MRI image. Inter-
modal registration allows precise spatial localization across
these images. Intra-modal registration is also important as it
allows spatial localization across multiple subjects.

A registration can be categorized by whether it is inter-
modal or intra-modal, inter-subject or intra-subject and also
by the type of transformation applied to the input image [7].
The most important transformation for this study is the affine
transformation, described by Equation 2, which has 12 degrees
of freedom (DOF) in 3D. Figure 3 shows different transfor-
mations applied to a simple image.
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where the lij parameters are the nine parameters of a linear
transformation, the ti parameters are the translations in 3D, x,
y, and z are the input coordinates and x′, y′, and z′ are the
transformed coordinates.

Registration typically consists of four components: A trans-
formation, an interpolation, a similarity metric and an op-
timization algorithm. The transformation is applied to an
input image to increase its similarity with a reference image.
Interpolation is needed to apply transformations to the discreet
voxel based images. An optimization algorithm iteratively
finds the parameters of the transformation by maximizing the
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Fig. 3. Examples of different types of transformations applied to a grid. The
transformations are: (a) Identity transformation, (b) Rigid 6 DOF transforma-
tion, (c) Affine 12 DOF transformation and (d) Nonlinear transformation.

similarity between the transformed image and the reference
image [7].

Conventional registration algorithms cannot be applied di-
rectly to DTI images as each voxel contains directional
information. If the transformation contains a component of
rotation, it is important to re-orient the diffusion tensor in each
voxel accordingly [8]. For a purely rigid transformation, the
rotational component of the transformation can be applied as
it is to each of the voxels. Applying an affine transformation
to a diffusion tensor would violate an accepted assumption
that the transformation should only alter the orientation of
the diffusion tensors and not change their size or shape. Thus
for affine transformations, simply applying the transformation
to each voxel is not satisfactory. Two methods are proposed
to account for this. The first is the finite strain method [9],
where the rotational component is extracted from the affine
transformation via matrix decomposition. The second is the
principle diffusion directions method which can account for
stretches and shears. The linear portion of the affine matrix is
applied to the principle diffusion direction and then normalizes
it according to the magnitude of this product [9].

C. The Current State of DTI and Tractographic Image Regis-
tration

Although image registration is in widespread use, it is far
from an infallible process [10]. These flaws are more promi-
nent in the newer and more complex process of registering DTI
images. Tractography itself is not a robust process. As fibre
tracking is based on integration, small errors between the DTI
voxels are amplified along the fibres, such as the small errors
introduced by image registration.

There are remarkably few publications proposing algorithms
that register tractographic images directly, i.e. after fibre
tracking. One method registers a single fibre bundle as an
input image to a whole brain tractography as a reference using
affine transformations [11]. Two works have used nonlinear
transformations by finding local affine transformations and
combining them [12], [13]. However the algorithms are not
comprehensively documented and the methods used to validate
success are subjective or ambiguous.

III. METHODS

Two experiments are contrasted in this study. In both of
the experiments the fibre data used are physically meaningful
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Fig. 4. Examples of the segmented fibre bundles used showing (a) the
cingulum, (b) the corticofugal tract and (c) the uncinate fasciculus.

bundles of fibres segmented out of the whole brain tractog-
raphy. This allows the success of registration on the internal
structures of the brain, which exhibit a high variability, to be
assessed. Figure 4 shows examples of these segmented fibre
bundles. The dataset consists of 10 brain images each with 13
segmented bundles. The bundles are made up of 1300 fibres
on average and each fibre consists of 100 3D data points on
average. The bundles are from the right side of the brain or the
centre. Bundles from the left side are not represented as the
brain can be taken as symmetrical and are therefore redundant.
The data were supplied by the Max Plank Institute of Human
Cognitive and Brain Science in Leipzig, Germany.

A. Local Affine Registration

Registration tools for MRI brain images are widely avail-
able. These tools operate on conventional MRI images, FA
maps and even DTI images. However there are no tools
available that can register fibre data. Instead of recreating a
registration algorithm, the fibre images are converted into a
form that can be used by existing tools in this study.

Each fibre bundle is converted to a volume. Affine registra-
tion is performed directly on these volumes and then reapplied
to the source fibre images using equation 4. A separate
registration is performed on each fibre bundle, rather than
finding on affine transformation for the entire source image.
These local affine transformations can later be combined into
a single nonlinear transformation for the entire image using a
polyaffine framework as done in [13].

Volumes were produced by finding spatial probability den-
sity functions (PDF) for each fibre bundle according to the
equation [13]:

Pbi(~x) =
1

Z

∑
tj∈bi

∑
~xk∈tj

κ(~x− ~xk) (3)

where bi is a fibre bundle, tj is a single fibre and ~xk is
a point on a fibre defined as a 3D spatial vector. ~x is the
3D spatial coordinate of the probability distribution, i.e. the
voxel coordinate, Z is a normalizing constant chosen to
make the values of Pbi(~x) sum to 1 and κ(~x − ~xk) is a
Gaussian kernel centred around ~xk. The fibre bundles that are
used in this project have on average 1300 fibres per bundle
with an average of 100 points per fibre. Multiplied by the
160× 200× 160 voxels of each DTI image, Equation 3 needs
to calculate 0.7 trillion values to create a probability density
function (PDF) for one, average fibre bundle. This is very
computationally expensive. This study compared the use of
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Fig. 5. A fibre volume (a) and its corresponding binary volume (b).

Fig. 6. Example of a binary volume from all the fibre bundles of a brain
image from three orthogonal views. The asymmetry is the result of only using
fibre bundles in the right hemisphere.

such a PDF as the volume against a simple binary volume
derived from the fibre bundles. Figure 5 shows an example of
such a binary volume.

The affine transformation produced by an affine registration
of the volume images is simple to reapply to the fibre images.
The transformation assumes that the centre of rotation is the
centre of the image and so half of each pixel dimension,
represented by the vector ~N1/2, must be subtracted from a
point before applying the affine transformation and added back
afterwards. This processed can be expressed as:

~p′ = A−1(~p− ~N1/2) + ~N1/2 (4)

where ~p is the source point, ~p′ is the transformed point and
A is the affine matrix or the form shown in equation 2. The
matrix is inverted as the output from the registration tool gives
the transformation to get back to the source.

B. Global Affine Registration

One single global volume is created for each source image
by combining the individual volumes from each fibre bundle.
Binary volumes are used as the volume-based local affine
experiment showed that they outperform the PDFs and are
incomparably faster. These results are given in Section IV.
Figure 6 shows an example of such a whole brain binary
volume.

C. Validation

The success of each registration was assessed by converting
the fibre bundle into a binary volume and calculating 6 similar-
ity metrics between the volume derived from the transformed
fibres and the volume derived from the reference fibres. The
metrics are:
• The Pearson correlation coefficient given by equation 5
• Four overlap metrics, target overlap, TSR, source overlap,
SSR, mutual overlap, MSR, and union overlap, USR which
are given by equation 6



TABLE I
MEAN OF IMPROVEMENT OF FIBRE REGISTRATIONS PER METHOD.

Method Cross Corre-
lation

Target
Overlap

Source
Overlap

Mutual
Overlap

Union
Overlap

Cohen’s
Kappa

Local 0.1309 0.11 0.15 0.13 0.10 0.1321
Global 0.0445 0.03 0.06 0.04 0.03 0.0442

• Cohen’s Kappa.
where ~x is a vector describing the voxel coordinates and s~x and
r~x are the intensities of the source image, S and the reference
image, R at voxel ~x.
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TSR =
|S ∩ R|
|R|

, SSR =
|S ∩ R|
|S|

,

MSR = 2
|S ∩ R|
|S|+ |R|

, USR =
|S ∩ R|
|S ∪ R|

(6)

Cohen’s Kappa is traditionally a statistical measure of
repeatability used with categorical data. [14] and [15] describe
a method to use Cohen’s Kappa to measure the similarity of
two fibre bundles. This is done by converting each bundle
to a binary volume. Voxels are divided into 4 categories
namely those that are empty in both images, the sum of
which defines Snn, those that contain a tract in both images
whose sum is Spp, those that contain a tract in the source
image but not the reference image, Snp, and those containing
tracts in the reference image but not the source, Spn. The
number of voxels expected to be empty is then defined as
Enn = (Snn+Snp)(Snn+Spn)/N and the number expected
to contain tracts is Epp = (Spp + Snp)(Spp + Spn)/N , where
N is the total number of voxels in each image. Observed
agreement (OA) is (Snn +Spp)/n× 100 and expected agree-
ment (EA) is (Enn + Epp)/n× 100. Cohen’s Kappa is then
given as

κ =
OA− EA
100− EA

(7)

For consistency, κ will be denoted KSR in this paper.

IV. RESULTS

Figure 7 shows a single fibre bundle from each of the 10
images used in this experiment superimposed on each other in
different colours. This figure illustrates the success or failure
of a registration as the success is inversely proportional to the
colour separation. It is clear that the local affine registration
gave the best results followed by the global affine registration.
An example of a visual assessment is provided as Figure 9.
Figure 8 shows the mean improvement of each of the methods
for each of the similarity metrics.

Figure 10 shows the results of the comparison between
binary volumes and PDFs. The binary volumes clearly outper-
form the PDFs in the image and the average time per bundle

(a) (b) (c)

Fig. 7. Comparison of methods using the volume of the arcuate fasciculus
as an example. The bundles from each of the 10 brain images are shown in
different colours superimposed on one another. (a) shows the source images,
(b) the output images from the local affine registration, and (c) the output
images from the global affine registration.

Fig. 8. Mean improvement of fibre registrations per method.

was decreased from 32 hours for the PDF to 0.21 seconds for
the binary volumes.

V. DISCUSSION

The experiments show that the direct registration of fibre
images produces alignment of individual fibre bundles. The

(a) (b) (c)

Fig. 9. Comparison of methods using the volume of the arcuate fasciculus as
an example. The green volume is the reference bundle and is identical in all
five images. The red volume is: (a) the source image, (b) the output from the
local affine registration, and (c) the output from the global affine registration.

(a) (b) (c)

Fig. 10. Comparison of output volumes from fibre registration using PDF
and binary volumes as the base registration. The green volumes are from the
reference fibres and the red volumes are from (a) the source fibres, (b) the
output fibre from the registration of PDFs and (c) the output fibres from the
registration of binary volumes.



tracked fibres will not suffer from the accumulative error
introduced by the imperfect spatial realignment and voxel
re-orientation of DTI registration as the fibre tracking is
performed prior to the registration.

Figure 8 shows that the local affine registration substantially
outperforms the global affine method. This is shown visually
in Figure 7, where Figure 7(b) is clearly the image with all
10 bundles most closely aligned. Variability in the size, shape
and orientation of cortical structures in primates is particularly
pronounced [16]. This ratifies the observation that a better
alignment can be found by aligning corresponding structures
separately rather than aligning the entire brain image globally.

The six metrics for measuring the alignment of the fibre
bundles generally agree. The values for Cohen’s Kappa all
fall in the moderate agreement category as defined by [17].
Cohen’s Kappa is usually used as a measure of inter-rater
agreement and has been used to measure alignment of fibre
bundles for intra-subject, rigid transformations.

The use of binary volumes as a base registration over PDFs
in the local-affine registration proved not only to be faster
but also to produce registrations of a higher quality. It takes
almost 70000 times longer to calculate the PDF volume of a
fibre bundle as it does to find the equivalent binary volume.

VI. CONCLUSION

DTI and tractography have produced new images that are
allowing the intricate structure of the white matter fibres in the
brain to be studied for the first time. Precise localization across
images is essential and is achieved through image registration.
Registration of DTI images is complicated by the fact that
each voxel needs to be re-oriented aside from the spatial
reorganization of the voxels. This process is still an open
problem. Tractography is an error prone process which is not
robust to changes in the DTI image. It is reasonable to assume
that tractography prior to the registration of the DTI image
will produce more accurate results than tracking fibres after
registration. The problem of registering tractographic images
has had very little attention in the literature. This project
compared two methods of registering fibre images directly.
The first method found local affine transformations for each
bundle by converting the bundles to binary volumes. The
binary volumes are faster to calculate and produce superior
results to PDFs as used in the literature. This method is the
most successful improving the correlation by 0.13, more than
twice the improvement of the global method. The local affine
method is superior due to the high variability in the cortical
structures of humans, which a global affine transformation
cannot account for.
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