Synthesis of Li$_4$Ti$_5$O$_{12}$ and its electrochemical properties

Guoqiang Liua, Lei Wenb, Mesfin Kebedec, Hongze Luoc

aSchool of Material and Metallurgy, Northeastern University, China
bChinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, China
cCouncil for Scientific and Industrial Research, South Africa

hluo@csir.co.za

Lithium-ion batteries are now well established in the market as the rechargeable power source. The spinel Li$_4$Ti$_5$O$_{12}$ has many advantages over the graphite, although, which has been used as anode since lithium ion batteries was invented.

Li$_4$Ti$_5$O$_{12}$ shows negligible lattice change during the intercalation of Lithium ions. Therefore, the excellent cyclability can be expected for spinel Li$_4$Ti$_5$O$_{12}$\(^1\). Another important advantage of Li$_4$Ti$_5$O$_{12}$ is safe for Li$_4$Ti$_5$O$_{12}$ spinel to be used in power batteries of large applications such as Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV).

The low intrinsic electronic conductivity is a present shortcoming of Li$_4$Ti$_5$O$_{12}$ material, which prevents its rate performances. Many synthesizing methods have been proposed to improve its electrochemical properties. Among of these methods, the solid state reaction is a commonly used method to prepare electrode materials for lithium ion batteries. It is simple and suitable for mass production. However, electrochemical performances of the Li$_4$Ti$_5$O$_{12}$ prepared by solid state method are usually not satisfactory. This is due to the inhomogeneity, large size and irregular morphology of products synthesized by solid state method\(^2\).

We report the synthesized Li$_4$Ti$_5$O$_{12}$ with small and well-distributed particle size (~0.5 μm). The influences of reaction conditions such as reaction temperatures and reaction time on the products were investigated in detail.

References:
