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ABSTRACT   

Modal decomposition of optical fields as a concept has been in existence for many decades, yet despite its clear 
applications to laser beam analysis it has nevertheless remained a seldom used tool.  With the commercialization of 
liquid crystal devices, digital holography as an enabling tool has become accessible to all, and with it modal 
decomposition has come of age.  Here we outline the basic principles of modal decomposition of laser beams with digital 
holograms, and review recent results on the modal decomposition of arbitrary optical fields.  We show how to use the 
information to infer the intensity, phase, wavefront, Poynting vector and orbital angular momentum density of the light.  
In particular, we show how to achieve optimal modal decomposition even in the absence of key information about the 
field, such as its scale and wavefront.  We demonstrate the techniques on optical fields from fibers, diode-pumped solid-
state lasers, and structured light by laser beam shaping. 
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1. INTRODUCTION 
The decomposition of some light field into a superposition of orthonormal basis functions, so-called modes, has been 
known for a long time1-5.  Previously modal decomposition was executed with match filters encoded as physical 
diffractive optical elements and thus while extremely accurate were nonetheless expensive and required specialist 
knowledge of such tools. Using these optics, often called correlation filters, one could show excellent reconstruction of 
intensity, phase and the beam quality factor of a variety of laser beams6-8.  Despite the appropriateness of the techniques, 
the experiments were nevertheless rather complex or customized to analyze a very specific mode set. Recently this 
subject has been revisited by employing digital holograms for the modal decomposition of laser beams from fibers, with 
the first modal decomposition by digital holography done on Laguerre-Gaussian modes from a diode-pumped solid-state 
laser9 and then subsequently applied to fiber modes10, for the real-time measurement of the beam quality factor of a laser 
beam11, for the determination of the orbital angular momentum density of light12-14 and for measuring the wavefront and 
phase of light15.   

In this paper we review the recent work on the use of digital holograms for modal decomposition.  We also 
outline a new approach using digital holography for an optimal modal decomposition without any prior knowledge of the 
scale parameters within the basis functions16.  We show that in a simple two-step process both the scale and the optimal 
mode set can be found.  The result, as we will show, is that the complete decomposition can be achieved without any 
initial scale information.     

2. CONCEPT 
Consider an expansion of an arbitrary optical field, U: 
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where the expansion is in terms of the basis functions Ψ.  The central idea in this section is how to measure the modal 
coefficients cn directly and therefore obtain all the required information about a scalar field distribution. Importantly we 
wish to do this with computer generated holograms (CGH) in the form of digital holograms written to a spatial light 
modulator (SLM).  If the transmission function of the CGH is 
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then the field directly behind the diffractive CGH will read as 
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The far field diffraction is realised experimentally by using a lens with a focal length f and observing the field at the focal 
plane: 
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where A0 is a constant factor. By applying the following convolution theorem 
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to the previous equation we get 
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If the measurement is done at the origin of the focal plane then from 
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we find that the unknown coefficients may be related to the signal at this point from  
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Thus a transmission function as in Eq. (2) produces a diffraction pattern containing information about the modal 
coefficients: we are able to determine a signal that is proportional to |cn|2 with a detector that is positioned directly in the 
center of the output focal plane. With this approach we are only able to measure one mode. It is possible, in principle, to 
measure all modes by modifying the transmission function 
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so that it contains all possible modes, each of them multiplied by a grating of spatial frequency nV
v

.  In the CGH plane 
we then find 
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To evaluate the field in the focal plane of the Fourier lens, a simplification is possible by using the shifting theorem 
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From which we get 
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This means that the output pattern consists of a superposition of cross correlation functions between the incident field 
)(uU v

 and the mode field distribution nΨ . These correlation answers are shifted transversely by a spatial frequency nV
v

 
and therefore each is projected to a particular position in the detector plane – simultaneous correlations of the various 
modes.   A similar approach is followed to find the intermodal phases, where superpositions of modes are programmed 
onto the SLM15. 

With the complete modal decomposition of the field achieved, it is possible to calculate the intensity of the field 

I = |u(r,φ)|2                                                                                         (12) 

the phase of the field 

ϴ =  arg[u(r,φ)],                                                                                 (13) 

the Poynting vector 
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and the OAM density 
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In the sections to follow we illustrate the power of the technique with some typical examples of measurements of these 
quantities using modal decomposition with digital holograms. 

3. INTENSITY AND PHASE 
It is clear that if all the modal weightings and their phases are known, then the intensity and phase of the light may 
readily be found from Eqs. (12) and (13).  In Figure 1 and Figure 2 we illustrate this for laser beams from various 
sources.  In all cases the reconstructed intensities10,16 and phases15 were in excellent agreement with the experimentally 
measured data using CCD detectors and wavefront sensors. 
 

 
 

Fig. 1. Reconstructed intensity using modal decomposition for: (a) fibre laser beam and (c) a structured light beam from a 
SLM and (c) a solid-state laser.  The insets show the measured (or created) intensity by traditional means. 
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Fig. 2. (a) Measured intensity on a Shack-Hartmann wavefront sensor (SHS), (b) Reconstructed intensity using modal 
decomposition, (c) Measured phase on a Shack-Hartmann wavefront sensor (SHS), (d) Reconstructed phase using modal 
decomposition.   

4. ORBITAL ANGULAR MOMENTUM DENSITY 
Orbital angular momentum (OAM) is very topical of late, and the measurement of the OAM density is important for 
understanding the interaction of light and matter in, for example, optical trapping systems.  Using Eqs. (14) and (15) we 
may readily calculate the OAM density from the measured modal weightings and their phases, as shown in Figure 3. 

 
Fig. 3. Orbital angular momentum density measurement of a structured light beam by modal decomposition: (1st column) 
Measured and programmed super-position beam of LG21+LG03; (2nd column) Measured and programmed super-position 
beam of LG21+LG23.    
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In these cases structured light superpositions of Laguerre-Gaussian modes of radial order p and azimuthal order l, LGpl, 
were created on an SLM and then directed to a second SLM for the modal decomposition.  The measured OAM density 
[jz (meas)] is in excellent agreement with the expected OAM density [jz (programmed)] as programmed on the first 
SLM17. 

5. SCALE INDEPENDENCE 
An important limitation in modal decomposition methods is the requirement that some scale information is available on 
the modes to be studied. Modal decomposition is a powerful tool to characterize laser beams and allows very detailed 
studies of the underlying physics of a laser system. Accordingly, an optical field can be described as a superposition of 
basis functions, called the modes, each weighted with a complex expansion coefficient. To determine these coefficients 
is the main task of each modal decomposition, mapping all necessary information about the field onto a one-dimensional 
set of coefficients. However, a reasonable decomposition necessitates the knowledge about the scale of the beam. 
Mathematically, each basis set, independent from its scale, is suitable to describe an optical field of certain size. 
However, changing the scale of the basis set will change the expansion coefficients. Hence, a reasonable decomposition 
is performed into a basis set with a size adapted to the beam itself, yielding the minimum number of nonzero 
coefficients. Note that the size of such a best fitting mode set is understood as the corresponding fundamental mode size, 
which is unequal the size of the beam itself, which may consist of any arbitrary superposition of modes.  
Consider for example the basis set of Laguerre-Gaussian modes with mode numbers p and l: 
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where r=(r,φ) are the coordinates, w0 the intrinsic beam radius of the set (corresponding fundamental mode radius), and L 
the Laguerre polynomial. An arbitrary scalar optical field U can decomposed into the Laguerre-Gaussian set of any size: 
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where cpl (a) and cpl (b) denotes the complex expansion coefficient for size wa and wb, respectively. From Eq. (17) it 
becomes clear that the modal spectrum cpl changes with scale of the basis set. To attain a mode set of adapted size we 
propose the following recipe: two quantities need to be measured, the beam radius w in the plane of interest and the beam 
quality factor M2. The scale of the basis set can then be inferred from 

2
0 / Mww =                                                (18) 

enabling the decomposition in an adapted mode set. To determine beam size and beam quality factor any appropriate 
method may be used14, including the modal decomposition approach itself, by making a guess for the size of the mode 
set and running the decomposition16. Deducing the correct size from these measurements the decomposition can be re-
run into the adapted mode set.  The results from such a procedure are shown in Figure 4. 
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Fig. 4. (a) Measured modal amplitudes and (b) measured modal phases.  With this information the measured intensity of the 
field, (c), can be reconstructed. (d). The reconstructed intensity profile was done without any a prior information of the 
beam’s scale.    

A similar approach can be used to deduce the unknown curvature of the basis set15.  An alternative approach is to run the 
modal decomposition into a basis set that does not have any scale, for example the angular harmonics, in which case the 
scale information is ultimately stored in radially dependent coefficients of the basis11. 

6. CONCLUSION 
We have shown that modal decomposition with digital holograms is a versatile tool for the characterization of laser 
beams.  With a full decomposition of the field, it is possible to retrieve all the physical quantities associated with the 
field, including the intensity, phase, wavefront, Poynting vector and orbital angular momentum density of the light.  In 
particular, we have shown how to achieve optimal modal decomposition even in the absence of key information about 
the field.  Our results have included examples from fibers, diode-pumped solid-state lasers, and structured light by laser 
beam shaping 
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