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ABSTRACT   

Although many techniques are efficient at measuring optical orbital angular momentum (OAM), they do not allow one to 
obtain a quantitative measurement for the OAM density across an optical field and instead only measure its global OAM. 
Numerous publications have demonstrated the transfer of local OAM to trapped particles by illustrating that particles 
trapped at different radial positions in an optical field rotate at different rotation rates. Measuring these rotation rates to 
quantitatively extract the OAM density is not only an indirect measurement but also a complicated experiment to 
execute. In this work we theoretically calculate and experimentally measure the OAM density of light, for both 
symmetric and non-symmetric optical fields. We outline a simple approach using only a spatial light modulator and a 
Fourier transforming lens to measure the OAM spectrum of an optical field and we test the approach on superimposed 
non-diffracting higher-order Bessel beams. We obtain quantitative measurements for the OAM density as a function of 
the radial position in the optical field for both symmetric and non-symmetric superpositions, illustrating good agreement 
with the theoretical prediction. The ability to measure the OAM distribution of optical fields has relevance in optical 
tweezing, and quantum information and processing.  
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1. INTRODUCTION  
Laguerre-Gaussian beams [1], Bessel-Gaussian beams [2] and Airy beams [3] are all fields which carry orbital angular 
momentum (OAM) of lħ per photon as they have an azimuthal angular dependence of exp(ilφ) [1, 4], where l is the 
unbounded azimuthal mode index and φ is the azimuthal angle. Since the discovery of light beams carrying OAM, many 
methods have been developed for the detection of OAM modes, from the ‘fork’ hologram which projects the mode of 
interest into a detectable Gaussian mode [5] to the diffraction of apertures [6–8], where the 2D interference pattern is 
indicative of the OAM spectrum. Other techniques involve implementing the rotational frequency shift [9–11] which is a 
rather complex measurement, while recent work on dove prism interferometers [12] has resulted in the robust sorting of 
odd and even OAM modes [13]. An efficient mode sorter [14] has also been developed for the measurement of OAM 
states which has successfully been applied to Laguerre-Gaussian [15] and Bessel-Gaussian beams [16].  
 
Even though the aforementioned techniques are efficient at measuring OAM modes, they do not allow one to obtain a 
quantitative measurement for the OAM density. To the best of our knowledge, the only attempts to make quantitative 
measurements of the OAM density have been made by measuring the rotation rates of particles trapped in optical 
tweezing systems [17, 18]. Not only is this a difficult experiment to conduct, but it is an indirect measurement. Another 
method uses the Doppler shifts of a rotating detector [19, 20] producing the reconstruction of the optical OAM spectrum. 
 
In this manuscript we theoretically calculate and experimentally measure the OAM density of both symmetric and non-
symmetric superpositions of non-diffracting Bessel beams [21-23]. We demonstrate a simple approach that requires only 
a spatial light modulator (SLM) and a lens to perform a radial azimuthal decomposition [22] or a modal decomposition 
into an appropriate basis [23] allowing for a quantitative reconstruction of the OAM density.  
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2. THEORY  

The amplitude of a non-symmetric superposition of two Bessel beams can be described as
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where Jl and Jm are the Bessel functions of orders l and m, respectively. q1 and q2 are the radial wave numbers, ∆k is the 
difference between the two longitudinal wave numbers, α0 is the ratio between the two component Bessel fields, and A0 
is a normalization constant. The Poynting vector 
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together with the total OAM density (in the direction of propagation, z)  
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results in the total OAM density for the field given in Eq. (1) to be 
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The term Δkz can be ignored as its effect on the optical field is only a constant phase-shift. From the theoretical OAM 
density a quantifiable measurement is determined as [22]    
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Integrating over φ, results in the average OAM density  
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Replacing the azimuthal order m with –l, the amplitude for a symmetric superposition of two Bessel beams, of opposite 
azimuthal order, is given by 
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and the average OAM density as  
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The symmetric and non-symmetric superpositions can be extended to consist of many Bessel beams and the 
experimental OAM densities can be extracted by extending the simple forms in Eqs (6) and (8).  
 
Another technique to extract the OAM density of an optical field involves performing a modal decomposition [23]. Any 
optical field can be expressed in terms of modes, forming an orthogonal basis function 
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Here cl = ϱleiφl is the complex expansion coefficient with amplitude ϱl and intermodal phase Δφl (with respect to a 
reference phase), Ψl(r) is the lth mode, and N the number of modes. The intensity and phase can be easily inferred from 
the modal amplitudes and phases.  
 
The modal decomposition can be performed optically using correlation filters, which perform a correlation of the 
incident field with the modes that are encoded into the filter. An inner product measurement allows one to measure the 
power and relative phase of each individual mode. Measuring the power of a specific mode requires the complex 
conjugate of that mode to be programmed as the transmission function [24]: 
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In the inner product measurement, this transmission function yields an intensity on the optical axis in the Fourier plane of 
the correlation filter that is proportional to ϱl

2. Since the complete information about the optical field can be inferred 
from the modal decomposition, the Poynting vector can be calculated by Eq. 2 and subsequently the OAM density.            
 

3. EXPERIMENTAL METHODOLOGY  
The experimental setup for measuring the OAM density consisted of a section for the generation of the beam of interest 
(A) and their subsequent modal decomposition (B), as depicted in Fig. 1. A HeNe laser (λ ~ 633 nm) was expanded 
through a 6× telescope and directed onto the liquid crystal display of SLM1. The first SLM was encoded to produce 
various superposition fields using the concept of Durnin’s ring-slit [25], but implemented digitally [26]. The resulting 
images of the Bessel fields were captured on a CCD camera or  magnified with a 10× objective and directed to SLM2. 
The incoming field was divided into 10 annular rings (Fig. 1 (f)) and the phase within each annular ring was  varied as 
the complex conjugate of the azimuthal modes present in the incoming field. By measuring the on-axis intensity of the 
inner-product, the weighting coefficients, (ϱl(r))2, can be experimentally measured as a function of the radial co-ordinate 
and the azimuthal mode resulting in the OAM density can be quantitatively measured.   
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Fig. 1. A schematic of the experimental setup for measuring the OAM density as a function of the radial position.  L: 
Lens (f1 = 25 mm; f2 = 150 mm; f3 = 200 mm and f4 = 200 mm); M: Mirror; SLM: Spatial light modulator; O: Objective; 
PM: Pop-up mirror; CCD: CCD camera. The objective, O2, was placed at the focus (or Fourier plane) of lens, L4. The 
corresponding optical fields or holograms are represented at the appropriate planes. (f) An example of a field of interest 
subdivided into 10 annular rings each of azimuthal index l = 3.  
 
The experimental setup for measuring the OAM density of light by performing a modal decomposition is depicted in Fig. 
2 (a). To generate the various optical modes, for which we intend to calculate the OAM density, a HeNe laser was 
expanded through a 8.3× telescope and directed onto SLM1. By displaying their respective mode patterns on SLM1 with 
the method described in [27, 28], having an intrinsic beam diameter of d = 1.5 mm and a sinusoidal grating spacing of  Δ 
= 30 pixels (an example is given in Fig. 2 (c)), the corresponding optical modes were generated (Fig. 2 (d)). The modes 
were relay imaged through a beam splitter (BS) to a near-field CCD camera, CCD1 and a second SLM (SLM2) where the 
modal decomposition was performed. The modal weighting coefficients were found by executing an inner product of the 
mode of interest with a suitable match-filter (an example is given in Fig. 2 (e)) which was encoded with the same mode 
size as that on SLM1. The modal phases were extracted by the interference with a suitable reference mode [24]. The 
diffracted field from SLM2 was Fourier transformed by lens L5 and the signal detected on CCD2, containing the on-axis 
intensity of the correlation channel, was used to infer the modal weighting coefficients.  
 

 
Fig. 2. (a) A schematic of the experimental setup for measuring the OAM density of light by performing a modal 
decomposition.  L: Lens (f1 = 15 mm; f2 = 125 mm; f3 = 500 mm; f4 = 500 mm and f5 = 300 mm); M: Mirror; LCD: 
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Liquid Crystal Display; BS: Beam Splitter; CCD: CCD Camera. (b) The Gaussian beam used to illuminate SLM1. (c) 
The digital hologram used to generate the optical mode of interest (d). The digital hologram (e) used to extract the 
weighting of the mode by detecting the on-axis intensity at the plane of the inner product (f).  
 

4. RESULTS AND DISCUSSION  
SLM1 was first encoded with a ring-slit separated into two ring-slits (of equal widths), each possessing an azimuthal 
phase of equal order but opposite handedness, (linner = 3 and louter = -3) and then later with unequal azimuthal phases (linner 
= 3 and louter = 4) .  In the case that SLM1 was encoded with two ring-slits, where the orders of the two azimuthal phases 
are of equal but opposite handedness, a ‘petal’-structure was produced, where the number of ‘petals’ is denoted by 2|l|. 
The match-filter (encoded on SLM2) was programmed digitally so that the radius of the ring-slit, as well as the azimuthal 
phase within the ring-slit can be dynamically addressed. This allows one to radially locate where in the optical field one 
wishes to measure the OAM density. The OAM density for a particular radial position can then be measured directly 
from Eqs (6) and (8) by measuring the on-axis intensity of the inner-product. The measured OAM densities as a function 
of the radial position for a symmetric and non-symmetric optical field are given in Fig. 3 (a) and (b), respectively.  
 

 
Fig. 3. (a) The theoretical (blue curve) and experimentally measured (red points) OAM density for a symmetric 
superposition. (b) The theoretical (blue curve) and experimentally measured (red points) OAM density for a non-
symmetric superposition. Inserts denote the theoretically calculated field (top) and a density plot of the OAM density 
(bottom) where red denotes negative OAM and blue denotes positive.  
 
In implementing the experimental setup described in Fig. 2 which involved performing a modal decomposition using the 
same mode size as that encoded on SLM1, we examined a superposition of two Laguerre-Gaussian beams 
LG0,1+LG0,−2exp(−iπ/3) with an intermodal phase shift of Δφ = −π/3. The results are depicted in Fig. 4. The reconstructed 
intensity (Fig. 4 (a)) reveals the 3-lobe structure formed by the interference of the two modes. The Poynting vector 
spirals around four rotation centers depicting the phase singularities (marked with red dots in Fig. 4 (a)). Figure 4 (b) and 
(c) depict the measured and calculated OAM density, which have a correlation of 92 %. Since the azimuthal indices of 
the field of interest are both positive and negative (l = 1 and l = -2), the OAM density possesses both positive and 
negative values. The structure of the OAM density resembles the triangular symmetry of the intensity distribution with 
maxima in the vicinity of the phase singularities. A similar measurement can easily be performed on superpositions of 
Bessel beams. 
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Fig. 4. (a)The reconstructed intensity and transverse Poynting vectors (red dots mark position of the phase singularities). 
(b) The theoretical OAM density and (c) the measured OAM density. Inset in (a) depicts measured beam intensity. 
 

5. CONCLUSION   
We have used the Poynting vector approach to derive expressions for the OAM density for optical fields. For both a 
symmetric and a non-symmetric superposition of non-diffracting Bessel beams, we obtain quantitative measurements for 
the OAM density as a function of the radial position and illustrate good agreement with the theoretical prediction. 
Although the global OAM is zero, the local OAM spectrum changes radially across the beam. Another technique that 
was implemented is based on correlation filters to perform a modal decomposition with subsequent reconstruction of the 
optical field, allowing one to infer the Poynting vector and the OAM density. Both methods require only an appropriate 
hologram, a lens and a single point detector.  
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