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Abstract

A logic for specifying probabilistic transition systems is presented. Our
perspective is that of agents performing actions. A procedure for decid-
ing whether sentences in this logic are valid is provided. One of the main
contributions of the paper is the formulation of the decision procedure: a
tableau system which appeals to solving systems of linear equations. The
tableau rules eliminate propositional connectives, then, for all open branches
of the tableau tree, systems of linear equations are generated and checked for
feasibility. Proofs of soundness, completeness and termination of the decision
procedure are provided.

Keywords: probabilistic actions, modal logic, tableau method, systems of
linear inequalities

1. Introduction

In this article, we present a logic for specifying agents’ stochastic action
models, or more generally, for specifying probabilistic transition systems—
the Specification Logic of Actions with Probability (SLAP). Our logic takes
the possible worlds semantics of modal logic and draws inspiration from
Markov decision process (MDP) theory to deal with probabilities.

Modal logic [1, 2, 3, 4] is considered to be well suited to reasoning about
beliefs and changing situations and MDP theory [5, 6, 7] has proven to be a
good general framework for formalizing dynamic stochastic systems.
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Next we introduce a scenario to illustrate concepts throughout the article.
Imagine a robot that is in need of an oil refill. There is an open can of oil
on the floor within reach of its gripper. If there is nothing else in the robot’s
gripper, it can grab the can (or miss it, or knock it over) and it can drink
the oil by lifting the can to its ‘mouth’ and pouring the contents in (or miss
its mouth and spill). The robot may also want to confirm whether there is
anything left in the oil-can by weighing its contents with its ‘weight’ sensor.
And once holding the can, the robot may wish to replace it on the floor.

The domain is (partially) formalized as follows (one cannot model the
(epistemic) effects of observations with SLAP). The robot has the set of
(intended) actions A = {grab, drink, weigh, replace} with expected mean-
ings. The robot experiences its world (domain) through three Boolean fea-
tures: P = {full, drank, holding} meaning respectively that the oil-can is
full, that the robot has drunk the oil and that it is currently holding some-
thing in its gripper. Given a formalization BK of our scenario, the robot
may have the following queries:

� If the oil-can is full, I have not drunk the contents and I am holding the
can, is there a 0.15 probability that after ‘drinking’ the contents, the
oil-can is still full, I have still not drunk the oil and I am still holding
the can? That is, does (full∧¬drank∧holding)→ [drink]0.15(full∧
¬drank ∧ holding) follow from BK ?

� If the oil-can is empty and I’m not holding it, is there a 0.9 probability
that I’ll be holding it after grabbing it, and a 0.1 probability that I’ll
have missed it? That is, does (¬full∧¬holding)→ ([grab]0.9(¬full∧
holding) ∧ [grab]0.1(¬full ∧ ¬holding)) follow from BK ?

In another paper [8], we propose how to write sentences in the language of
SLAP to capture a model of probabilistic transitions due to the execution of
actions of some agent. And in that paper, we suggest which assumptions can
and perhaps should be made about such specifications to make them more
parsimonious. In the context of SLAP, we are interested in three things in the
domain of interest: (i) The initial condition IC , that is, a specification of the
world the agent finds itself in when it becomes active. (ii) Domain constraints
or static laws SL, that is, facts and laws about the domain that do not change.
(iii) Information about when actions are possible and impossible, the effects
of actions and conditions for the effects—the dynamics of the environment
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or system. Refer to these as the action description (AD). How to write these
axioms is the focus of that paper [8].

Let the union of all the axioms in SL and AD be denoted by the set BK —
the agent’s background knowledge. IC is not part of the agent’s background
knowledge.

In SLAP we are interested in whether IC → Φ follows from
∧
φ∈BK 2φ,

where Φ is any ‘legal’ sentence of interest and 2 marks sentences as laws of
the domain, that is, sentences which must be true in every possible world.

In Section 2.2, we define entailment, which depends on the notion of
validity. We must defer a discussion of the use of SLAP to Section 2.3, after
the syntax and semantics have been presented. The focus of this article,
though, is on a decision procedure for entailment of SLAP sentences from
sets of SLAP sentences, and on the computational property of the decision
procedure.

Section 2 defines SLAP. Section 3 provides a decision procedure for de-
termining entailment of sentences in SLAP. In Section 4, we prove that the
procedure is sound, complete and that it terminates, that is, we show that
SLAP is decidable with respect to entailment. Sections 5 and 6 cover some
related work, and respectively, summarizes what has been achieved in this
article, and discusses future work.

2. Specification Logic of Actions with Probability

First we present the syntax of SLAP, then we state its semantics.

2.1. Syntax

The vocabulary of our language contains three sorts of objects of interest:

1. a finite set of propositional variables (alias, fluents) P = {p1, . . ., pn},
2. a finite set of names of atomic actions A = {α1, . . . , αn},
3. all rational numbers Q.

From now on, we denote Q∩ [0, 1] as Q[0,1]. We are going to work in a multi-
modal setting, in which we have modal operators [α]q, one for each α ∈ A
and q ∈ Q[0,1].
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Definition 2.1. Let α ∈ A, q ∈ Q[0,1] and p ∈ P . The language of SLAP,
denoted LSLAP , is the least set of Ψ defined by the grammar1:

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ.
Φ ::= ϕ | ¬Φ | Φ ∧ Φ | [α]qϕ.

Ψ ::= Φ | 2Φ | Ψ ∧Ψ.

We shall also require the definition of L−2SLAP , the least set of Φ as defined
above.

In SLAP, sentences of the form ¬2Φ are not in the language. The reason
is that the decision procedure for SLAP entailment would not notice certain
contradictions which may occur due to such sentences being allowed. Note
that formulae with nested modal operators of the form 22Φ, 222Φ, etc.
or of the form [α]q[α]qϕ, [α]q[α]q[α]qϕ, etc. are not in LSLAP . ‘Single-step’
or ‘flat’ formulae are sufficient to specify action transitions and transition
probabilities. As usual, we treat ⊥,∨,→ and↔ as abbreviations. → and↔
have the weakest bindings and ¬ the strongest; parentheses enforce or clarify
the scope of operators conventionally.

Two distinguished schemata are [α]qϕ and ¬[α]qϕ and shall be referred
to as dynamic literals. Any formula which includes a dynamic literal shall
be referred to as dynamic. [α]qϕ is read ‘The probability of reaching a world
in which ϕ holds after executing α, is equal to q’. [α] abbreviates [α]1. 〈α〉ϕ
abbreviates ¬[α]0ϕ and is read ‘It is possible to reach a world in which ϕ
holds after executing α’. Note that 〈α〉ϕ does not mean ¬[α]¬ϕ. One reads
2Φ as ‘Φ holds in every possible world’. We require the 2 operator to mark
certain information (sentences) as holding in all possible worlds—essentially,
the axioms which model the domain of interest.

Definition 2.2. A formula Ψ ∈ LSLAP is in conjunctive normal form (CNF)
if and only if it is in the form

Ψ1 ∧Ψ2 ∧ · · · ∧Ψn,

where each of the Ψi is a disjunction of literals, whether dynamic or propo-
sitional. The Ψis of a formula in CNF are called clauses.

1In [8], we erroneously omitted Ψ ∧Ψ from the definition of Ψ.
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A formula Ψ ∈ LSLAP is in disjunctive normal form (DNF) if and only if
it is in the form

Ψ1 ∨Ψ2 ∨ · · · ∨Ψn,

where each of the Ψi is a conjunction of literals, whether dynamic or propo-
sitional. The Ψis of a formula in DNF are called terms.

Note that if a dynamic literal [α]qϕ or ¬[α]qϕ is a disjunct/conjunct of
Ψi, ϕ is allowed to have any form, as long as ϕ ∈ LSLAP .

2.2. Semantics

SLAP structures are derived from Markov decision processes (MDPs)
[5, 6, 7]. An MDP model is a tuple 〈S,A, T ,R, s0〉: S is a finite set of
states the agent can be in; A is a finite set of actions the agent can choose to
execute; T is the function defining the probability of reaching one state from
another, for each action; R is a function, giving the expected immediate
reward gained by the agent, for any state and agent action; and s0 is the
initial state in S. However, rewards are not modeled in SLAP structures.

Standard modal logic structures (alias, possible worlds models) are tuples
〈W,R, V 〉, where W is a (possibly infinite) set of states (possibly without in-
ternal structure), R is a binary relation on W , and V is a valuation, assigning
subsets of W to each atomic proposition. This is the standard Kripke-style
semantics (see, e.g., [9, 10, 1]).

SLAP structures are non-standard: Its semantics has a structure of the
form 〈W,R〉, where W is a finite set of worlds such that each world assigns
a truth value to each atomic proposition, and R is a binary relation on
W . Moreover, SLAP is multi-modal in that there are multiple accessibility
relations.

Intuitively, when talking about some world w, we mean a set of features
(propositions) that the agent understands and that describes a state of affairs
in the world or that describes a possible, alternative world. Let w : P 7→
{0, 1} be a total function that assigns a truth value to each proposition. Let
C be the set of all possible functions w. We call C the conceivable worlds.

Definition 2.3. A SLAP structure is a tuple S = 〈W,R〉 such that

1. W ⊆ C a non-empty set of possible worlds.
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Figure 1: A transition diagram for the grab action. The letters f, d and h, respectively
represent propositional literals full, drank and holding. And ∼ reads ‘not’.

2. R : A 7→ Rα, where Rα : (W×W ) 7→ Q[0,1] is a total function from pairs
of worlds into the rationals; That is, R is a mapping that provides an
accessibility relation Rα for each action α ∈ A; For every w− ∈ W , it
is required that either

∑
(w−,w+,pr)∈Rα pr = 1 or

∑
(w−,w+,pr)∈Rα pr = 0.

Note that the set of possible worlds may be the whole set of conceivable
worlds.

Rα defines the transition probability pr ∈ Q[0,1] between worlds w+ and
w− via action α. If (w−, w+, 0) ∈ Rα, then w+ is said to be inaccessible or
not reachable via α performed in w−, else if (w−, w+, pr) ∈ Rα for pr ∈ (0, 1],
then w+ is said to be accessible or reachable via action α performed in w−.
If for some w−,

∑
(w−,w+,pr)∈Rα pr = 0, we say that α is inexecutable in w−.

Figure 1 is a pictorial representation of transitions and their probabilities
for the action grab of the oil-can scenario. The eight circles represent the
eight conceivable worlds with their valuations.

Definition 2.4 (Truth Conditions). Let S be a SLAP structure, with
α, α′ ∈ A and q, pr ∈ Q[0,1]. Let p ∈ P and let Ψ and ϕ be sentence in
LSLAP . We say Ψ is satisfied at world w in structure S (written S, w |= Ψ)
if and only if the following holds:

1. S, w |= > for all w ∈ W ;

2. S, w |= p ⇐⇒ w(p) = 1 for w ∈ W ;
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3. S, w |= ¬Ψ ⇐⇒ S, w 6|= Ψ;

4. S, w |= Ψ ∧Ψ′ ⇐⇒ S, w |= Ψ and S, w |= Ψ′;

5. S, w |= [α]qϕ ⇐⇒
(∑

(w,w′,pr)∈Rα,S,w′|=ϕ pr
)

= q;

6. S, w |= 2Ψ ⇐⇒ for all w′ ∈ W, S, w′ |= Ψ.

Looking at Figure 1, for instance, if the robot is in a situation where the
oil-can is full, the oil has not been drunk and the can is not being held, then
the probability that the oil-can is still full after grabbing the can is 0.7 +
0.1 = 0.8. Thus, in the syntax of SLAP, given a formalization BK of the
scenario, (full ∧ ¬drank ∧ ¬holding)→ [grab]0.8full follows from BK .

A formula Ψ is valid in a SLAP structure (denoted S |= Ψ) if S, w |= Ψ for
every w ∈ W . Ψ is SLAP-valid (denoted |= Ψ) if Ψ is true in every structure
S. If |= θ ↔ ψ, we say θ and ψ are semantically equivalent (abbreviated
θ ≡ ψ).

Ψ is satisfiable if S, w |= Ψ for some S and w ∈ W . A formula that is not
satisfiable is unsatisfiable or a contradiction. The truth of a propositional
formula depends only on the world in which it is evaluated. We may thus
write w |= Ψ instead of S, w |= Ψ when Ψ is a propositional formula.

Let K ⊂ LSLAP and Φ ∈ LSLAP . We say that Φ is a local semantic
consequence of K (denoted K |= Φ) if for all structures S and all w ∈ W of
S, if for all θ ∈ K, S, w |= θ, then S, w |= Φ. We also say that K entails Φ
whenever K |= Φ.

Proposition 2.1. Recall that L−2SLAP is all formulae in LSLAP such that the
formulae contain no 2 operators. For every Ψ ∈ L−2SLAP , there exists a for-
mula Ψ′ ∈ L−2SLAP in CNF and there exists a formula Ψ′′ ∈ L−2SLAP in DNF
such that Ψ ≡ Ψ′ ≡ Ψ′′.

The proof is straight-forward, appealing to basic logical equivalences.

2.3. Reducing Entailment to Unsatisfiability

Let K be a finite subset of LSLAP and let Φ be an element of L−2SLAP .

Proposition 2.2. K |= Φ ⇐⇒
∧
θ∈K θ ∧ ¬Φ is unsatisfiable.
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The proof is straightforward.
Note that ¬2Φ′ 6∈ LSLAP . This is why Φ is restricted to be in L−2SLAP . The

restriction is not a problem when 2 is used only to define domain axioms
or laws, which are always in the knowledge base or an agent’s background
knowledge BK (here represented by K) and not in Φ. The decision procedure
for entailment in SLAP is thus based on Proposition 2.2 (with restricted
arguments).

In the introduction, we mentioned that we are interested in whether IC →
Φ follows from

∧
φ∈BK 2φ, in general. Formally, this is stated as

{2φ | φ ∈ BK} |= IC → Φ,

where Φ ∈ L−2SLAP is any sentence of interest, IC ∈ L−2SLAP is a sentence
describing an agent’s initial condition and BK ⊂ L−2SLAP is the agent’s back-
ground knowledge. For instance, a complete specifications of the probabilistic
effects of action grab (Fig. 1) is

full ∧ drank ∧ ¬holding → [grab]0.7(full ∧ drank ∧ holding) ∧
[grab]0.3(drank ∧ ¬holding);

full ∧ ¬drank ∧ ¬holding → [grab]0.7(full ∧ ¬drank ∧ holding) ∧
[grab]0.3(¬drank ∧ ¬holding);

¬full ∧ drank ∧ ¬holding → [grab]0.9(¬full ∧ drank ∧ holding) ∧
[grab]0.1(¬full ∧ drank ∧ ¬holding);

¬full ∧ ¬drank ∧ ¬holding → [grab]0.9(¬full ∧ ¬drank ∧ holding) ∧
[grab]0.1(¬full ∧ ¬drank ∧ ¬holding).

The above sentences would appear in AD ⊆ BK . IC could, for example, be
full ∧ ¬drank ∧ holding and Φ could, for example, be [drink]0.15(full ∧
¬drank ∧ holding).

In terms of the decision procedure, the question of whether

{2φ | φ ∈ BK} |= IC → Φ

is posed as the question of whether∧
φ∈BK

2φ ∧ ¬(IC → Φ)

is (un)satisfiable.
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In the soundness and completeness proofs (§ 4.1 and § 4.2), even though
formulae of the form ¬Φ are analysed, ¬Φ always has the form

∧
θ∈K θ∧¬Φ′,

where Φ′ does not mention the 2 operator.

3. Decision Procedure for SLAP Entailment

In this section we describe a proof procedure which has two phases: cre-
ation of a tableau tree (the tableau phase) and then seeking solutions for a lin-
ear system of inequalities (equations and disequations; the SLI phase). The
tableau method we propose is adapted from Castilho, Gasquet and Herzig
[11]. The basic approach is similar, but it has been extensively modified to
suit our needs. In the SLI phase, solutions are sought for systems of in-
equalities generated from formulae involving dynamic literals appearing in a
particular form in the open branches of the tree created in the tableau phase.
Depending on the results, certain branches may become closed. Depending
on the final structure and contents of the tree, the sentence for which the
tree was created can be determined as valid or not.

To clarify the reasoning behind the processes of the two phases, we intro-
duce an example and apply the processes of each phase to it. The example
will not illustrate how every kind of scenario which can occur is dealt with,
but it should give a flavour for how the procedure works.

3.1. The Tableau Phase

The necessary definitions and terminology are given next.

Definition 3.1. A labeled formula is a pair (x,Ψ), where Ψ ∈ LSLAP is a
formula and x is an integer called the label of Ψ.

Definition 3.2. A node Γjk with superscript j (the branch index) and sub-
script k (the node index), is a set of labeled formulae.

Definition 3.3. The initial node, that is, Γ0
0, to which the tableau rules

must be applied, is called the trunk.

Definition 3.4. A tree T is a set of nodes. A tree must include Γ0
0 and

only nodes resulting from the application of tableau rules to the trunk and
subsequent nodes. If one has a tree with trunk Γ0

0 = {(0,Ψ)}, we’ll say one
has a tree for Ψ.
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When we say ‘...where x is a fresh integer’, we mean that x is the smallest
positive integer of the right sort (formula label or branch index) not yet used
in the node to which the incumbent tableau rule will be applied.

A tableau rule applied to node Γjk creates one or more new nodes; its
child(ren). If it creates one child, then it is identified as Γjk+1. If Γjk creates

a second child, it is identified as Γj
′

0 , where j′ is a fresh integer. That is, for
every child created beyond the first, a new branch is started.

Definition 3.5. A node Γ is a leaf node of tree T if no tableau rule has been
applied to Γ in T .

Definition 3.6. A branch is the set of nodes on a path from the trunk to a
leaf node.

Note that nodes with different branch indexes may be on the some branch.

Definition 3.7. Γ is higher on a branch than Γ′ if and only if Γ is an ancestor
of Γ′.

Definition 3.8. A node Γ is closed if (x,⊥) ∈ Γ for any x ≥ 0. It is open
if it is not closed. A branch is closed if and only if its leaf node is closed. A
tree is closed if all of its branches are closed, else it is open.

The tableau rules for SLAP follow. Let Γjk be a leaf node.

1. A rule may only be applied to an open leaf node.

2. A rule may not be applied to a formula if it has been applied to that
formula higher in the tree, as defined in Definition 3.7.

3. rule ⊥: If Γjk contains (x,Ψ) and (x,¬Ψ), then create node Γjk+1 =

Γjk ∪ {(x,⊥)}.
4. rule ¬: If Γjk contains (x,¬¬Ψ), then create node Γjk+1 = Γjk∪{(x,Ψ)}.
5. rule ∧: If Γjk contains (x,Ψ ∧ Ψ′), then create node Γjk+1 = Γjk ∪
{(x,Ψ), (x,Ψ′)}.

6. rule ∨: If Γjk contains (x,¬(Ψ ∧ Ψ′)), then create node Γjk+1 = Γjk ∪
{(x,¬Ψ)} and node Γj

′

0 = Γjk ∪ {(x,¬Ψ′)}, where j′ is a fresh integer.

7. rule 3ϕ: If Γjk contains (0,¬[α]0ϕ) or (0, [α]qϕ) for q > 0, then create
node Γjk+1 = Γjk ∪ {(x, ϕ)}, where x is a fresh integer.

8. rule 2: If Γjk contains (0,2Φ) and (x,Φ′) for any x ≥ 0, and if it does
not yet contain (x,Φ), then create node Γjk+1 = Γjk ∪ {(x,Φ)}.
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The second rule constrains rule application to prevent trivial re-applications
of rules. For example, if rule 2 were applied to (0,2p1) ∈ Γ2

3, then it may
not be applied to (0,2p1) ∈ Γ2

4.

Definition 3.9. A branch is saturated if and only if any rule that can be
applied to its leaf node has been applied. A tree is saturated if and only if
all its branches are saturated.

Example

Suppose that

2(¬full ∧ ¬holding→ [grab]0.9holding ∧ [grab]0.1¬holding)

and
2(¬full ∧ ¬holding→ [grab]¬full)

are two domain axioms in our oil-drinking robot’s background knowledge.
Figures 2 and 3 depict a tableau tree for (partially) deciding whether the
robot’s background knowledge entails

¬full ∧ drank ∧ ¬holding→ [grab]0.9(¬full ∧ holding).

That is, we want to determine whether the probability of being in a sit-
uation where the oil-can is not full while being held is 0.9 after grabbing
the can in a situation where it is not full, it is on the floor and the oil
has already been drunk—given the axioms about how the domain works.
full, drank, holding and grab are respectively abbreviated as f, d, h and g.

Deciding whether

{2(¬f ∧ ¬h→ ([g]0.9h ∧ [g]0.1¬h)),2(¬f ∧ ¬h→ [g]¬f)}
|=

¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)

holds is equivalent to determining whether the tree for

2(¬f ∧ ¬h→ ([g]0.9h ∧ [g]0.1¬h))∧
2(¬f ∧ ¬h→ [g]¬f)∧
¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h))

closes. The trunk in the figure is written in a slightly more convenient form.
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The vertices represent nodes and the arcs represent the application of
tableau rules. Arcs are labeled with the rule they represent, except when
branching occurs, in which case, obviously the ∨ rule was applied. In Fig-
ures 2 and 3, it is shown how the vertices relate to the corresponding node.
The reader should keep in mind that the node corresponding to a vertex v
contains all the labeled formulae in vertices above v on the same branch—the
vertices show only the elements of nodes which are ‘added’ to a node due to
the application of some rule. An exception is the top vertex of a tree, which
is the trunk and not the result of any rule application. In order to show
the development of the tree, some liberties were taken with respect to rule
application: In some cases, rule application is not shown, that is, from parent
node to child node, a formula may be ‘processed’ more than is possible by
the application of the rule represented by the arc from parent to child in the
figure.

The arc labeled “nf” denotes normal forming : ¬(¬(¬f ∧ d ∧ ¬h) ∨
[g]0.9(¬f ∧ h) is an abbreviation for ¬¬(¬f ∧ d ∧ ¬h) ∧ ¬[g]0.9(¬f ∧ h).

On the left-hand side of the Figure 3, it seems that three nodes ‘share’
two children. This is only to fit all the information in the diagram. Actually,
each of nodes Γ0

6, Γ1
0 and Γ2

0 branches to two of its own children, and these
children share some of the same formulae with their ‘cousins’ as indicated. In
other words, strictly speaking, there should be six branches instead of two.

Determining whether the tree finally closes will be seen in the Example
section after the SLI phase is described (§ 3.3). Each open leaf node will be
involved in the SLI phase for a final decision.

3.2. Systems of Linear Inequalities

Suppose a tree has been ‘grown’ till saturation and it has some open
branches. It might be the case that there are formulae in the leaf nodes of
some open branches, specifying transition probabilities of some action, which
are mutually unsatisfiable.

For instance, the tree for [grab]0.9holding∧ [grab]0.6holding has exactly
four nodes:

Γ0
0 = {(0, [grab]0.9holding ∧ [grab]0.6holding)}
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Γ0
0 = {(0,2(¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h))),

(0,2(¬(¬f ∧ ¬h) ∨ [g]¬f)),
(0,¬(¬(¬f ∧ d ∧ ¬h) ∨ [g]0.9(¬f ∧ h))}

(0,¬¬(¬f ∧ d ∧ ¬h) ∧ ¬[g]0.9(¬f ∧ h)) ∈ Γ0
1

nf

(0,¬¬(¬f ∧ d ∧ ¬h)), (0,¬[g]0.9(¬f ∧ h)) ∈ Γ0
2

∧

(0,¬f ∧ d ∧ ¬h) ∈ Γ0
3

¬

(0,¬f), (0, d), (0,¬h) ∈ Γ0
4

∧

(0,¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h)), (0,¬(¬f ∧ ¬h) ∨ [g]¬f) ∈ Γ0
5

2

(0,¬(¬f ∧ ¬h) ∈ Γ0
6

(0,¬(¬f ∧ ¬h),
(0, [g]¬f) ∈ Γ1

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0,¬(¬f ∧ ¬h) ∈ Γ2

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0, [g]¬f) ∈ Γ3

0

continues below

Figure 2: First part of a tableau tree for 2(¬f ∧¬h→ ([g]0.9h∧ [g]0.1¬h))∧2(¬f ∧¬h→
[g]¬f) ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)).
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continued from above

(0,¬(¬f ∧ ¬h) ∈ Γ0
6

(0,¬(¬f ∧ ¬h),
(0, [g]¬f) ∈ Γ1

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0,¬(¬f ∧ ¬h) ∈ Γ2

0

(0, ([g]0.9h ∧ [g]0.1¬h)),
(0, [g]¬f) ∈ Γ3

0

(0,¬¬f) ∈ Γ0
7,Γ

1
1,Γ

2
1 (0,¬¬h) ∈ Γ4

0,Γ
5
0,Γ

6
0

(0, f) ∈ Γ0
8,Γ

1
2,Γ

2
2

¬

(0, h) ∈ Γ4
1,Γ

5
1,Γ

6
1

¬

(0,⊥) ∈ Γ0
9,Γ

1
3,Γ

2
3

⊥

(0,⊥) ∈ Γ4
2,Γ

5
2,Γ

6
2

⊥

(0, [g]0.9h), (0, [g]0.1¬h), (0, [g]¬f) ∈ Γ3
1

∧

(1, h), (2,¬h), (3,¬f) ∈ Γ3
2

3ϕ

(1, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)),
(1, f ∨ h ∨ [g]¬f),

(2, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)),
(2, f ∨ h ∨ [g]¬f),

(3, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)),
(3, f ∨ h ∨ [g]¬f) ∈ Γ3

3

2

(1, f), (2, f),
(3, f) ∈ Γ3

4

(3,⊥) ∈ Γ3
5

⊥
(1, f), (2, f),
(3, h) ∈ Γ7

0

· · ·

(1, [g]0.9h), (1, [g]0.1¬h),
(1, [g]¬f), (2, [g]0.9h),

(2, [g]0.1¬h), (2, [g]¬f),
(3, [g]0.9h), (3, [g]0.1¬h),

(3, [g]¬f) ∈ Γ8
0

Figure 3: Last part of the tableau tree for 2(¬f∧¬h→ ([g]0.9h∧ [g]0.1¬h))∧2(¬f∧¬h→
[g]¬f) ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)).

14



and after the application of rule ∧,

Γ0
1 = {(0, [grab]0.9holding ∧ [grab]0.6holding),

(0, [grab]0.9holding),

(0, [grab]0.6holding)}

and after the application of rule 3ϕ to (0, [grab]0.9holding),

Γ0
2 = {(0, [grab]0.9holding ∧ [grab]0.6holding),

(0, [grab]0.9holding),

(0, [grab]0.6holding),

(1, holding)}

and finally, after another application of rule 3ϕ, but this time to (0, [grab]0.6holding),

Γ0
3 = {(0, [grab]0.9holding ∧ [grab]0.6holding),

(0, [grab]0.9holding),

(0, [grab]0.6holding),

(1, holding),

(2, holding)}.

But stating that a transition to a world at which holding is true can be
reached with two different probabilities (0.9 and 0.6) is a contradiction.

To determine whether a formula is valid or not, the decision proce-
dure checks whether all branches of a tree are closed or not. Because the
branch/tree for the incumbent example should close, we need a procedure
which will check for contradictions in sets of dynamic formulae, and if a con-
tradiction is found, create a new node containing (x,⊥) at the end of the
applicable branch.

A näıve solution might be to add a tableau rule which deals with this
case. However, there are many subtle cases and designing rules to cover all
cases is very difficult. And proving that the tableau system with all these
rules is complete is challenging, to say the least. One instance of a formula
which is a contradiction yet not obviously so, is

[grab]0.9holding ∧
[grab]0.1¬holding ∧
[grab]¬full ∧
¬[grab]0.9(¬full ∧ holding),
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where the set of possible worlds is all conceivable worlds.
To be certain that all possible contradictions are noticed, a system of

equations and disequations (a system of linear inequalities (SLI)) is gener-
ated from a set of dynamic literals concerning the same action appearing in
the leaf node of an open branch. Fagin, Halpern and Megiddo [12] use a sim-
ilar idea to prove that the axiomatization of their logic for reasoning about
probabilities is complete. This is done for every action in A. The SLI phase
(§ 3.3) will determine whether to make an open branch closed, depending on
whether some SLI generated is feasible or infeasible (feasibility of an SLI is
defined in Def. 3.13).

Now we explain how a system of linear inequalities can be generated from
a set of dynamic literals.

Definition 3.10. W (Γ, x)
def
= {w ∈ C | w |= ` for all (x, `) ∈ Γ where ` is a

propositional literal}.

Definition 3.11. X(Γ)
def
= {0, 1, . . . , x′} are all the labels mentioned in Γ.

Definition 3.12. W (Γ)
def
=
⋃
x∈X(Γ)W (Γ, x).

Let n = |W (Γ)|. Let W (Γ)# = (w1, w2, . . . , wn) be an ordering of the worlds
in W (Γ). With each world wk ∈ W (Γ)#, we associate a rational variable
prk ∈ Q[0,1]. One can generate

ci,1pr1 + ci,2pr2 + · · ·+ ci,nprn = qi,

for a formula (x, [α]qiϕi) ∈ Γ and

ci,1pr1 + ci,2pr2 + · · ·+ ci,nprn 6= qi,

for a formula (x,¬[α]qiϕi) ∈ Γ, such that ci,k = 1 if wk |= ϕi, else ci,k = 0,
where x represents a label.

Let ∆(α) be a set of dynamic literals mentioning α, and let ∆(α)# =

([α]q1ϕ1, [α]q2ϕ2, . . . , [α]qgϕg,¬[α]qg+1ϕg+1,¬[α]qg+2ϕg+2, . . . ,¬[α]qg+hϕg+h)

be an ordering of the members of ∆(α). (When SLIs are actually generated
in the SLI phase, exactly which literals are involved will be specified.)
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With this notation in hand, given some α, we define the system

c1,1pr1 + c1,2pr2 + · · ·+ c1,nprn = q1

c2,1pr1 + c2,2pr2 + · · ·+ c2,nprn = q2
...

cg,1pr1 + cg,2pr2 + · · ·+ cg,nprn = qg
cg+1,1pr1 + cg+1,2pr2 + · · ·+ cg+1,nprn 6= qg+1

cg+2,1pr1 + cg+2,2pr2 + · · ·+ cg+2,nprn 6= qg+2
...

cg+h,1pr1 + cg+h,2pr2 + · · ·+ cg+h,nprn 6= qg+h
pr1 + pr2 + · · ·+ prn = q∗,

(1)

where each of the first g + h (in)equalities represents a member in ∆(α)#

and such that q∗ = 1 or q∗ = 0. Note that due to q∗ having two possible
values, System (1) represents two distinct systems of equations.

Definition 3.13. A solution set for an SLI S is the set of all solutions of the
form (s1, s2, . . . , sn) for S, where assigning si to pri for i = 1, 2, . . . , n solves
all the (in)equalities in S simultaneously. An SLI is feasible if and only if its
solution set is not empty.

Assigning si to pri for i = 1, 2, . . . , n simply means that the values which
the pri variables must take for all the (in)equalities to be simultaneously
true are the si. These are the feasible transition probabilities to all possible
worlds, given some action executed in some world, and given a set of formulae
(partially) specifying the action’s transition behavior for/from that world.

We shall say that System (1) generated as above is feasible if and only if
one or both of the two systems (either with q∗ = 1 or with q∗ = 0) has a
feasible solution, that is, if and only if the union of their solution sets is not
empty.

The equation
pr1 + pr2 + · · ·+ prn = q∗,

is to ensure that either
∑

(w−,w+,pr)∈Rα pr = 1 or
∑

(w−,w+,pr)∈Rα pr = 0, as
stated in Definition 2.3 on page 6.

3.3. The SLI Phase

Definition 3.14. Let ∆(α) be a set of dynamic literals mentioning α. Z(∆(α))
is the solution set for the SLI generated from ∆(α).
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Definition 3.15. F (Γ, α, x)
def
= {[α]qϕ | (x, [α]qϕ) ∈ Γ} ∪ {¬[α]qϕ |

(x,¬[α]qϕ) ∈ Γ}.

After the tableau phase has completed, the SLI phase begins. For each
leaf node Γjk of an open branch, do the following.

If Z(F (Γjk, α, x)) = ∅ for some action α ∈ A and some label x ∈ X(Γjk),
then create new leaf node Γjk+1 = Γjk ∪ {(x,⊥)}.

Definition 3.16. A tree is called finished after the SLI phase is completed.

Note that all branches of a finished tree are saturated.

Definition 3.17. If a tree for ¬Ψ is closed, we write ` Ψ. If there is a
finished tree for ¬Ψ with an open branch, we write 6` Ψ.

Example

We continue with the example of Figures 2 and 3. Only the leaf node of
the right-most (open) branch of the tree is considered. Using the same kind
of analysis made below, it can be shown that every branch which is open
after the tree is saturated should close due to the infeasibility of some SLI
generated from a set of formulae in the applicable leaf node.

For brevity, denote w1 as 111 where w1 |= full ∧ drank ∧ holding,
w2 as 110 where w2 |= full ∧ drank ∧ ¬holding, . . . , w8 as 000 where
w8 |= ¬full ∧ ¬drank ∧ ¬holding. We shall refer to the open leaf node on
the RHS in Figures 2 and 3 as Γ. Observe that

� W (Γ, 0) = {010},

� W (Γ, 1) = {111, 101, 011, 001},

� W (Γ, 2) = {110, 100, 010, 000},

� W (Γ, 3) = {011, 010, 001, 000}.

and W (Γ) = {111, 101, 011, 001, 110, 100, 010, 000} = C.

0. F (Γ, grab, 0) = {[grab]0.9holding, [grab]0.1¬holding, [grab]¬full,
¬[grab]0.9(¬full ∧ holding)}.
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1. F (Γ, grab, 1) = {[grab]0.9holding, [grab]0.1¬holding, [grab]¬full}.

2. F (Γ, grab, 2) = {[grab]0.9holding, [grab]0.1¬holding, [grab]¬full}.

3. F (Γ, grab, 3) = {[grab]0.9holding, [grab]0.1¬holding, [grab]¬full}.

The system generated from F (Γ, grab, 0) is

0 + 0 + 0 + 0 + pr5 + 0 + pr7 + 0 = 0.9
0 + pr2 + 0 + pr4 + 0 + pr6 + 0 + pr8 = 0.1
0 + 0 + 0 + 0 + pr5 + pr6 + pr7 + pr8 = 1
pr1 + 0 + pr3 + 0 + pr5 + 0 + pr7 + 0 6= 0.9
pr1 + pr2 + pr3 + pr4 + pr5 + pr6 + pr7 + pr8 = 1.

Due to pr5 + pr6 + pr7 + pr8 = 1 (3rd equation), it must be the case that
pr5 +pr7 6= 0.9 (4th disequation). But it is required by the first equation that
pr5 + pr7 = 0.9, which forms a contradiction. Thus, there exists an action
and a label for which Z(F (Γ, grab, x) = ∅ and the branch closes.

4. Properties of the Decision Procedure

4.1. Soundness

Theorem 4.1 (Soundness). If ` Ψ then |= Ψ. (Contrapositively, if 6|= Ψ
then 6` Ψ.)

Let ψ = ¬Ψ. Then 6` Ψ if and only if the tree for ψ is open. And

6|= Ψ ⇐⇒ not (∀S) S |= Ψ

⇐⇒ not (∀S, w) S, w |= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the soundness proof, it thus suffices to show that if there exists a structure
S and w in it such that S, w |= ψ, then the tree rooted at Γ0

0 = {(0, ψ)} is
open.

Lemma 4.1. Let T be a finished tree. For every node Γ in T : If there exists
a structure S such that for all (x,Φ) ∈ Γ there exists a w ∈ W such that
S, w |= Φ, then the (sub)tree rooted at Γ is open.
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Proof. (by induction on the height of the node Γk)

Base case: Height h = 0; Γk is a leaf. If there exists a structure S such that
for all (x,Φ) ∈ Γk there exists a w ∈ W such that S, w |= Φ, then (x′,⊥) 6∈ Γk
for all x′. Hence, the sub-tree consisting of Γk is open.

Induction step: If h > 0, then some rule was applied to create the child(ren)
Γk′ of Γk. We abbreviate “there exists a structure Sj = 〈W j, Rj〉 such that
for all (xj,Φj) ∈ Γj there exists a wj ∈ W j such that Sj, wj |= Φj” as A(j)
and we abbreviate “the (sub)tree rooted at Γj is open” as B(j).

We must show the following for every rule/phase. IF: If A(k′), then
B(k′), THEN: If A(k), then B(k). We assume the antecedent (induction
hypothesis): If A(k′), then B(k′). To show the consequent, we must assume
A(k) and show that B(k) follows.

Note that if the (sub)tree rooted at Γk′ is open, then the (sub)tree rooted
at Γk is open. That is, if B(k′) then B(k). So we want to show B(k′). But, by
the induction hypothesis, B(k′) follows from A(k′). Therefore, it will suffice,
in each case below, to assume A(k), and prove A(k′).

� rule ⊥:
For the rule to have been applied, {(x,Ψ), (x,¬Ψ)} ⊆ Γk, and after
its application, Γk′ = Γk ∪ {(x,⊥)}. But there exists no structure
Sk = 〈W k, Rk〉 such that there exists a wk ∈ W k such that Sk, wk |= Ψ
and Sk, wk |= ¬Ψ. Hence, assumption A(k) is false and this rule could
not have been applied.

� rule ¬:
For the rule to have been applied, {(x,¬¬Ψ)} ⊆ Γk, and after its
application, Γk′ = Γk ∪ {(x,Ψ)}. By assumption, Sk, wk |= ¬¬Ψ.
Hence, Sk, wk |= Ψ. Thus, A(k′).

� rule ∧:
For the rule to have been applied, {(x,Ψ ∧ Ψ′)} ⊆ Γk, and after its
application, Γk′ = Γk ∪ {(x,Ψ), (x,Ψ′)}. By assumption, Sk, wk |=
Ψ ∧Ψ′. Hence, Sk, wk |= Ψ and Sk, wk |= Ψ′. Thus, A(k′).

� rule ∨:
For the rule to have been applied, {(x,Ψ ∨ Ψ′)} ⊆ Γk, and after its
application, either Γk′ = Γk ∪ {(x,Ψ)} or Γk′′ = Γk ∪ {(x,Ψ′)}. By
assumption, Sk, wk |= Ψ ∨ Ψ′. Hence, Sk, wk |= Ψ or Sk, wk |= Ψ′.
Thus, A(k′) or A(k′′). Thus, B(k′) or B(k′′). Therefore, B(k).
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� rule 3ϕ:
For the rule to have been applied, {(0,¬[α]0ϕ)} ⊆ Γk or {(0, [α]qϕ)} ⊆
Γk for q > 0, and after its application, Γk′ = Γk ∪ {(x, ϕ)} where x is a
fresh integer.

By assumption, there exists a w ∈ W such that S, w |= ¬[α]0ϕ or
S, w |= [α]qϕ. Then by definition of 〈α〉, there exists a w′′ ∈ W such
that (w,w′′, pr) ∈ Rα for pr > 0 and S, w′′ |= ϕ. Hence, for all (x,Φ′) ∈
Γk′ there exists a w′ ∈ W such that S, w′ |= Φ′.

� rule 2:
For the rule to have been applied, {(0,2Φ), (x,Φ′′)} ⊆ Γk for some
x ≥ 0, and after its application, Γk′ = Γk ∪ {(x,Φ)}.
By assumption, there exist w,w′ ∈ W such that S, w |= 2Φ and
S, w′ |= Φ′′. Then by definition of 2, for all w′′ ∈ W,S, w′′ |= Φ.
That is, there exists a w′′ ∈ W such that S, w′′ |= Φ. Hence, for all
(x,Φ′) ∈ Γk′ there exists a w′′′ ∈ W such that S, w′′′ |= Φ′.

� In the SLI phase, the ‘check’ is: If Z(F (Γk, α, x)) = ∅ for some action
α ∈ A and some label x ∈ X(Γ), then create new leaf node Γk′ =
Γk ∪ {(x,⊥)}.

Recall that F (Γ, α, x)
def
= {[α]qϕ | (x, [α]qϕ) ∈ Γ}∪{¬[α]qϕ | (x,¬[α]qϕ) ∈

Γ}.
By assumption, for all actions α ∈ A, all labels x ∈ X(Γ) and all
δ ∈ F (Γk, α, x), there exists a w ∈ W such that S, w |= δ. Let α be an
arbitrary action and x an arbitrary label in X(Γ), and let

R(α, x)# = {[α]q1ϕ1, [α]q2ϕ2, . . . , [α]qgϕg,¬[α]qg+1ϕg+1,¬[α]qg+2ϕg+2, . . .,
¬[α]qg+hϕg+h}
be an ordered set of the dynamic literals in F (Γk, α, x). Thus, there
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exists an Rα such that for w fixed,∑
(w,w′,pr)∈Rα,S,w′|=ϕ1

pr = q1 and

∑
(w,w′,pr)∈Rα,S,w′|=ϕ2

pr = q2 and

...∑
(w,w′,pr)∈Rα,S,w′|=ϕg+h

pr 6= qg+h

such that
∑

(w,w′,pr)∈Rα pr = 1 or
∑

(w,w′,pr)∈Rα pr = 0, for pr ∈ Q[0,1].

Let sj = prj for (w,wj, prj) ∈ Rα, where wj ∈ W (Γ)#. Then (s1, s2,
. . ., sn) is a solution to the SLI generated from R(α, x)# (or F (Γ, α, x)).
Hence, Z(F (Γk, α, x)) 6= ∅. Therefore, no child is created for Γk and
trivially, for all (x,Φ′) ∈ Γk′ there exists a w ∈ W such that S, w |= Φ′.

Corollary 4.1. For every finished tree of a sentence Ψ, if there exists a
structure S and a w ∈ W of S such that S, w |= Ψ, then the tree is open.

The corollary follows due to the special case when k = 0 of Γk mentioned in
the proof of Lemma 4.1.

It is known that the first-order theory of rational numbers (linear arith-
metic; without multiplication) is decidable; the Fourier-Motzkin method [13]
and Dines’ paper [14], for example, are proofs of this, and Ferrante and
Rackoff’s method is a more efficient (almost polynomial) variant [15]. Any
system of equations and disequalities as they appear in this work, can easily
be stated as an applicable first-order theory (see, e.g. Kroening and Strich-
man [16] and the appendix). In other words, there is a reliable means of
determining whether there exists at least one solution to an SLI. Therefore,
given Corollary 4.1, every execution of a rule or procedure in the decision
procedure is sound.

4.2. Completeness

Theorem 4.2 (Completeness). If |= Ψ then ` Ψ. (Contrapositively, if
6` Ψ then 6|= Ψ.)
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Let ψ = ¬Ψ. Then 6` Ψ means that there is an open branch of a finished
tree for ψ. And

6|= Ψ ⇐⇒ (∃S) S 6|= Ψ

⇐⇒ (∃S, w) S, w 6|= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the completeness proof, it thus suffices to construct for some open branch
of a finished tree for ψ ∈ LSLAP , a SLAP structure S = 〈W,R〉 in which there
is a world w ∈ W such that ψ is true in S at w.

We now start with the description of the construction of a SLAP struc-
ture, given the leaf node Γ of some open branch of a finished tree. First,
we define X(Γ)# to be some sequence of labels (x1, x2, . . . , xn) such that
w1 ∈ W (Γ, x1), w2 ∈ W (Γ, x2), . . ., wn ∈ W (Γ, xn), where (w1, w2, . . . , wn) =
W (Γ)#. S = 〈W,R〉 can be constructed as follows:

� Let W = W (Γ).

� For every action α ∈ A, the accessibility relation Rα can be constructed
as follows. Let Rα = {(wi, wj, sαj ) |

– wi, wj ∈ W (Γ)#,

– xi ∈ X(Γ)#,

– (s1, s2, . . . , sn) ∈ Z(F (Γ, α, xi))}.

Lemma 4.2. S is a SLAP structure.

Proof. The components of the structure are well-formed:

� W = W (Γ) =
⋃
x∈X(Γ){w ∈ C | w |= ` for all (x, `) ∈ Γ where ` is a

propositional literal}. That is, W = {w ∈ C | for all x,w |= ` for all
(x, `) ∈ Γ where ` is a propositional literal}. Thus, for W to be empty,
it must be the case that for all w ∈ C there exists some (x, `) ∈ Γ, for
which w 6|= `. But this is a contradiction. Hence, W is not empty.

� Due to Γ being open, we know that Z(F (Γ, α, x)) is not empty, for all
x ∈ X(Γ) and all α ∈ A.

By construction, R maps each action α ∈ A to Rα such that Rα is a
relation in W ×W × Q[0,1]. Moreover, if (w,w′, pr), (w,w′, pr′) ∈ Rα,
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then pr = pr′. This is because in the SLI generated from F (Γ, α, x),
the same variable represents pr and pr′ and it can have only one value.
Hence, Rα is a (total) function Rα : (W ×W ) 7→ Q[0,1].

And by construction, the fact that pr1+pr2+· · ·+prn = 1 or pr1+pr2+
· · ·+prn = 0 is an equation in any SLI generated, either

∑
(w,w′,pr)∈Rα pr =

1 or
∑

(w,w′,pr)∈Rα pr = 0, for every w ∈ W .

W.l.o.g., one can assume that, for every (x,2Φ) ∈ Γ, Φ is in DNF.

Lemma 4.3. Let Γ be the leaf node of a finished tree, where (0,2Φ) ∈ Γ,
for some 2Φ ∈ LSLAP . For every label x ∈ X(Γ), there exists a term (Φ1 ∧
Φ2 ∧ · · · ∧ Φm) of Φ such that (x,Φ1), (x,Φ2), . . ., (x,Φm) ∈ Γ.

Proof. Let Φ := t1∨t2∨· · ·∨tz. Let the labels mentioned in Γ (i.e., X(Γ)) be
{0, 1, 2, . . . , x′}. Rule 2 is applied to (0,2Φ) for every label (0, 1, 2, . . . , x′).
Hence, due to multiple applications of rule 2, the following labeled formulae
are in Γ: (0, t1 ∨ t2 ∨ · · · ∨ tz), (1, t1 ∨ t2 ∨ · · · ∨ tz), (2, t1 ∨ t2 ∨ · · · ∨ tz), . . .
(x′, t1 ∨ t2 ∨ · · · ∨ tz). And due to multiple applications of rule ∨, one of the
following sets is a subset of Γ.

� {(0, t1), (1, t1), (2, t1), . . . , (x′, t1)},

� {(0, t1), (1, t1), (2, t1), . . . , (x′, t2)},

...

� {(0, t1), (1, t1), (2, t1), . . . , (x′, tz)},

� {(0, t2), (1, t1), (2, t1), . . . , (x′, t1)},

� {(0, t2), (1, t1), (2, t1), . . . , (x′, t2)},

...

� {(0, t2), (1, t1), (2, t1), . . . , (x′, tz)},

...

� {(0, tz), (1, tz), (2, tz), . . . , (x′, tz)}.
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Now choose any one of these sets T . For every label x ∈ {0, 1, 2, . . . , x′},
(x, tk) ∈ T ⊂ Γ for some term tk := Φk1 ∧ Φk2 ∧ · · · ∧ Φkmk of Φ. Therefore,
due to successive applications of rule ∧, (x,Φk1), (x,Φk2), . . ., (x,Φkmk) ∈ Γ,
for every label x ∈ X(Γ).

Proposition 4.1. Let Γ be the leaf node of an open branch of a finished
tree and let S be constructed as described above. Let (x, δ) ∈ Γ where δ is a
dynamic literal. If S, w |= δ for some w ∈ W (Γ, x), then S, w′ |= δ for all
w′ ∈ W (Γ, x).

By construction, Rα = {(w,wj, sj) | x ∈ X(Γ), w ∈ W (Γ, x), wj ∈ W (Γ)#

and (s1, s2, . . ., sn) ∈ Z(F (Γ, α, x))}. Now suppose that S, w |= δ for
some w ∈ W (Γ, x). Notice that by the definition of Rα above, if there is a
solution in Z(F (Γ, α, x) for w ∈ W (Γ, x), that solution is available for all
w′ ∈ W (Γ, x). Therefore, S, w′ |= δ for all w′ ∈ W (Γ, x). Proposition 4.1
follows.

Lemma 4.4. If Γ is the leaf node of an open branch of a finished tree, then
there exists a structure S such that for all (x,Ψ) ∈ Γ, S, w |= Ψ for some
w ∈ W (Γ, x).

Proof. Let S be constructed as described above.
The proof will be by induction on the structure of a formula. The in-

duction step will work as follows. Let γ′ ⊆ Γ be added to Γ due to some
rule applied to γ ⊆ Γ. Thus, we need to prove that IF for all (x′,Ψ′) ∈ γ′,
S, w′ |= Ψ′ for some w′ ∈ W (Γ, x′), THEN for all (x,Ψ) ∈ γ, S, w |= Ψ for
some w ∈ W (Γ, x).

We assume the antecedent (induction hypothesis).

Base case:

� Ψ is a propositional literal. Then S, w |= Ψ for some w ∈ W (Γ, x), by
definition of W (Γ, x).

� Ψ is [α]qϕ. In the construction of S, a solution in Z(F (Γ, α, x)) is
utilized for some w ∈ W (Γ, x). Then as a direct consequence of the
construction of S, S, w |= [α]qϕ for some w ∈ W (Γ, x).

� Ψ is ¬[α]qϕ. In the construction of S, a solution in Z(F (Γ, α, x)) is
utilized for some w ∈ W (Γ, x). Then as a direct consequence of the
construction of S, S, w |= ¬[α]qϕ for some w ∈ W (Γ, x).
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Induction step:

� Ψ is ¬¬ψ. By rule ¬, (x, ψ) ∈ Γ. By induction hypothesis, S, w |= ψ.
By the definition of ¬, S, w |= ¬¬ψ.

� Ψ is ψ ∧ ψ′. By rule ∧, (x, ψ), (x, ψ′) ∈ Γ. By induction hypothesis,
S, w |= ψ and S, w |= ψ′. By the definition of ∧, S, w |= ψ ∧ ψ′.

� Ψ is ¬(ψ ∧ ψ′). By rule ∨, (x,¬ψ) ∈ Γ or (x,¬ψ′) ∈ Γ. By induction
hypothesis, S, w |= ¬ψ or S, w |= ¬ψ′. By the definition of ∨, S, w |=
¬(ψ ∧ ψ′).

� Ψ is 2Φ. Let X(Γ) = {0, 1, 2, . . . , x′}. Due to successive application of
rule 2, (0,Φ), (1,Φ), . . . , (x′,Φ) ∈ Γ. Then, by induction hypothesis,
S, w0 |= Φ for some w0 ∈ W (Γ, 0) and S, w1 |= Φ for some w1 ∈ W (Γ, 1)
and · · · and S, wx′ |= Φ for some wx′ ∈ W (Γ, x′).

We need to show that S, w |= 2Φ for some w ∈ W (Γ, 0), that is, that
for all w′ ∈ W (Γ), S, w′ |= Φ. This will be the case if: For every
w′ ∈ W (Γ), there exists a term t := Φ1 ∧ Φ2 ∧ · · · ∧ Φm of Φ such that
S, w′ |= t. Note that for wi, wj ∈ W (Γ), if wi 6= wj, it is sufficient that
there exist terms ti and tj of Φ such that S, wi |= ti and S, wj |= tj,
even if ti 6= tj.

By Lemma 4.3, for every label x ∈ X(Γ), there exists a term t :=
Φ1 ∧ Φ2 ∧ · · · ∧ Φm of Φ such that (x,Φ1), (x,Φ2), . . ., (x,Φm) ∈ Γ.

Then we define the set

L(t) := {Φi | Φi is a propositional literal conjunct of t}

and the set

∆(t) := {Φi | Φi is a dynamic literal conjunct of t}.

Note that t ≡
∧
`∈L(t) ` ∧

∧
δ∈∆(t) δ.

Let ` ∈ L(t). Then by induction hypothesis, S, w′′ |= ` for some
w′′ ∈ W (Γ, x). Note that if S, w′′ |= ` for some w′′ ∈ W (Γ), then
w′′ ∈ W (Γ, x). And if w′′ |= ` for some w′′ ∈ W (Γ, x), then w∗ |= ` for
all w∗ ∈ W (Γ, x). Thus,

S, w∗ |=
∧

`∈L(t)

` (for all w∗ ∈ W (Γ, x)).
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Hence, by definition of W (Γ),

S, w′ |=
∧

`∈L(t)

` (for all w′ ∈ W (Γ)). (2)

Let δ ∈ ∆(t). Then by induction hypothesis, S, w′′ |= δ for some
w′′ ∈ W (Γ, x). Recall that we defined X(Γ)# to be some sequence
of labels (x1, x2, . . . , xn) such that w1 ∈ W (Γ, x1), w2 ∈ W (Γ, x2), . . .,
wn ∈ W (Γ, xn), where (w1, w2, . . . , wn) = W (Γ)#. By construction and
definition of X(Γ)#, there is a label xi ∈ X(Γ)# such that a solution in
Z(F (Γ, α, xi))} is used in the construction of S, for every wi ∈ W (Γ)#.
Let wi be w′′ and xi be x.

Therefore, by (2) and the above argument for dynamic literals,

S, w′ |= t (for all w′ ∈ W (Γ)).

Corollary 4.2. By Lemmata 4.2 and 4.4, given the leaf node Γ of an open
branch of a finished tree, there exists a structure S such that for all (x,Φ) ∈ Γ,
for all w ∈ W (Γ, x), S, w |= Φ. But (0, ψ) ∈ Γ. Thus, if there is a finished
open tableau for ψ, then ψ is satisfiable.

Besides the references mentioned just after Corollary 4.1, Käufl [17] says that
the Inf-Sup-Method developed by Bledsoe [18] and refined by Shostak [19]
“is a complete decision procedure for systems of linear inequalities over the
rational numbers.” Theorem 4.2 follows directly from Corollary 4.2 and the
fact that there exist complete methods for determining the feasibility of SLIs
as they appear in this work.

4.3. Termination

Definition 4.1. Let Φ′ be a strict sub-part of Φ. A tableau rule has the
subformula property if and only if the new node(s) (Γ′) created by the ap-
plication of the rule, contains (x,Φ′) or (x,¬Φ′) for some x, due to applying
the rule.

Lemma 4.5. A tree for any formula Φ ∈ LSLAP becomes saturated. That
is, the tableau phase terminates.
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Proof. We can divide all the tableau rules into two categories: (i) those
which add ⊥ to the new node and (ii) those with the subformula property.
Category-(i) rules never cause rules to become applicable later. As a direct
consequence of sentences being finite and their subformula property, every
category-(ii) rule must eventually become inapplicable. Therefore, all rules
eventually become inapplicable, and it follows that any tree (for any formula)
would become saturated.

Theorem 4.3. The entailment decision procedure for SLAP terminates.

Proof. Due to Lemma 4.5, the tableau phase terminates (with a finite
number of branches).

Let Γ be the leaf node of an open branch. There is a finite number of
label assignments in SoLA(Γ) and a finite number of worlds in W (Γ). In the
SLI phase: for each open branch of a tree for Φ, a solution set for an SLI
is sought (at most) once for each label assignment, for each world, for each
action in A. Hence, a solution set for an SLI is sought a finite number of
times in the SLI phase.

Finding the solution set for an SLI is decidable as used in the SLI phase
[20, 16] and the process thus terminates in this phase.

Corollary 4.3. The entailment problem for SLAP is decidable.

Because the procedure is sound (Th. 4.1), complete (Th. 4.2) and terminating
(Th. 4.3), entailment is decidable.

5. Related Work

SLAP found inspiration from the logic of action and plans LAP [11], es-
pecially for the 2 operator for marking sentences globally applicable, that is,
for marking sentences as axioms. Their tableau method was also a useful stat-
ing point for our decision procedure. However, LAP deals with uncertainty
of action effects only with disjunction; this is a coarse-grained approach to
dealing with uncertainty. Moreover, LAP allows nesting of modalities, which
SLAP does not.

And SLAP found inspiration from the Master’s dissertation of Van Digge-
len [21] too, in which he presents a logic called LProbDL as the basis for a
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system to specify the behavior of mobile robots. “In LProbDL the perfor-
mance of actions with non-deterministic effects [...] is assumed to be the
only cause of uncertainty,” [21, p. 33]. An agent is assumed to always know
in what world it is and observation is always certain (complete). LProbDL
is introduced as a modal logic extended with probability theory and epis-
temic notions. Action-indexed box and diamond operators are defined, such
that the [α] operator has a meaning very similar to ours, but the diamond
operator is defined separately, not in terms of the box operator as we do.

Van Diggelen defines an accessibility relation R : A → 2S×S×(0,1] for
LProbDL, where S is a (non-empty) set of possible states. The third compo-
nent of the range of R is the probability with which a world will be accessed.
Note that if there is a relationship between two worlds, the probability that
the successor world will be accessed is never 0. For the same reason, he
has to define a diamond operator separately. At first we thought that this
is a good idea, but later, we found that it complicates matters extremely:
he introduces a probabilistic diamond operator with an unconventional (and
in our view, unintuitive) semantic definition, with “unreal” states that are
reached (and are inescapable) when an agent performs an impossible action.

Although SLAP uses probability theory, it is not for reasoning about
probability; it is for reasoning about (probabilistic) actions. There have been
many approaches/frameworks for reasoning about probability, but most of
them are either not concerned with dynamic environments [22, 23, 24] or they
are concerned with change, but they are not actually logics [25, 26, 27, 28].
We briefly discuss one of these:

Poole started work on a logic based framework for decision-making in
uncertain environments when he extended previous work on Probabilistic
Horn Abduction in the early 90s [29]. The result is the Independent Choice
Logic (ICL). In 1998 he wrote a paper about the current state of the logic
[30]. Poole employs first-order logic as the base logic and then constrains it
from various sides. The ICL is not a logic as such; it is a decision theoretic
framework with some components referring to sets of logical formulae of a
restricted form and a probability distribution over them. Although the re-
strictions are relatively tight, some types of formulae may still allow variables
and quantification, and function symbols.

Poole mentions that it is argued in the AI community that a logic for
knowledge representation should be at least as expressive as first-order logic.
But it is an argument exactly because there are people working in AI who
argue for much simpler logics; providing only as much expressivity as is
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required for a particular application area. It seems like the ICL is intended
for more general application than SLAP or planned extensions to SLAP is;
our starting point is thus a simpler logic for a narrower application area.

Some probabilistic logics for reasoning about action and change do exist,
but they are not suitable as bases for defining a minimalist logic with an MDP
semantics. For instance, De Weerdt et al. [31] present a modal logic to deal
with imprecision in robot actions and sensors. Their syntax and semantics is
simple and intuitive, yet rich enough to reason about the imprecisions that
robots typically need to deal with. They show this through some simple
examples.

However, they do not provide a proof system—axiomatic or otherwise—
to prove statements in their language. Furthermore, no description is given
of a systematic formalization of their intended domains. That is, they do not
fully address domain specification. Also, their paper focuses on noisy sensing;
no attention is given to nondeterminstic actions. All they say (almost) is,
“[...] we can also specify the effect of a movement. A move action can, just as
an observation, be seen as a non-deterministic choice between several move
actions. These choices represent the uncertainty introduced by the move,”
[31].

Iocchi, et al. [32] developed a useful framework for reasoning about agents
with sensing, qualitative nondeterminism and probabilistic uncertainty in
action outcomes. It is the logic E+. The application area of E+ is plan
generation for agents with nondeterministic and probabilistic uncertainy. A
major differences of E+ to SLAP is that E+ is based on a fragment of the
autoepistemic description logic ALCKNF [Donini et al. 2002] for modeling
dynamic systems, whereas SLAP is a multi-modal logic. The authors show
how to find finite horizon conditional plans from an initial state for a goal
description (with “maximal goodness”)‘. They prove the planning algorithm
sound, complete and computable. But they do not address the question of
whether an arbitrary sentence in their language is entailed by some knowledge
base. The SLAP decision procedure can determine the truth of arbitrary
entailments, but we cannot express sequences of actions or plans.

Many popular frameworks for reasoning about action employ or are based
on the situation calculus [33]. Reified situations make the meaning of formu-
lae perspicuous. For instance, the framework proposed by Bacchus, Halpern
and Levesque [34] and the logic ESP by Lakemeyer and Levesque [35] are
based on the situation calculus and are for reasoning with probabilities of
actions and observations. These logics are also able to express notions of
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(stochastic) belief. However, the situation calculus seems too rich and ex-
pressive for our purposes, and it would be desirable to remain decidable. The
decidability of SLAP sets it apart from first-order logics for reasoning about
action (including all logics based on the situation calculus).

6. Conclusion and Future Work

We presented a non-nesting logic (SLAP) for modeling probabilistic tran-
sition systems. The logic is based on modal logic with possible worlds seman-
tics. The paper proves that determining whether a SLAP sentence is valid
is decidable. We showed how entailment can be cast as a validity problem
and an example domain problem was presented. A crucial part of proving
SLAP decidable was reliant on the decidability of the feasibility of systems
of linear inequalities.

Adding stochastic observations, that is, a means to reason about noisy
sensing to SLAP will yield the logic called SLAOP. Our next research goal is
the development SLAOP, a logic for specifying partially observable Markov
decision processes (POMDPs) [36, 37]. SLAP’s significance lies in its role
as a foundation for defining SLAOP. Investigations indicate that the com-
bination of stochastic actions and observations requires solutions to systems
of (weakly) nonlinear inequalities and that the particular kind of systems
generated in SLAOP are decidable with respect to feasibility. Our next aim
is thus to prove that there exists a decidable (w.r.t. validity) logic sufficient
for specifying POMDPs.

Iocchi, et al. [32] also say that one of their aims is to extended E+ to rep-
resent POMDPs. But it seems that their extension of E+ and our extension
of SLAP to achieve POMDP specifications will result in significantly different
logics, with possibly different computability and computational properties.

Appendix A. More on the Decidability of the SLI Phase

Let
a1x1 + · · ·+ anxn ./ b

be a constraint, where ./ ∈ {=,≤, <}, the ai and b are rational constants
and the xi are rational variables. The conjunction of such constraints is a
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quantifier-free fragment of the theory of rational linear arithmetic. We call
the fragment TQ.

In terms of first-order logic, given some α and label x, we define the
formula A(α, x) ∈ TQ as

c1,1pr1 + c1,2pr2 + · · ·+ c1,nprn = q1 ∧
c2,1pr1 + c2,2pr2 + · · ·+ c2,nprn = q2 ∧

...
ch,1pr1 + ch,2pr2 + · · ·+ ch,nprn = qh ∧

ch+1,1pr1 + ch+1,2pr2 + · · ·+ ch+1,nprn 6= qh+1 ∧
ch+2,1pr1 + ch+2,2pr2 + · · ·+ ch+2,nprn 6= qh+2 ∧

...
ch+k,1pr1 + ch+k,2pr2 + · · ·+ ch+k,nprn 6= qh+k ∧

pr1 + pr2 + · · ·+ prn = q∗,

(A.1)

where each of the first h+ k conjuncts ((in)equalities) represents an element
in F (Γ, α, x) and q∗ = 0 or q∗ = 1 in the last conjunct. Due to q∗ having
two possible values, A(α, x) actually represents two systems or elements of
TQ. Let all the equations (excluding disequations) be represented by the
system Cpr = q of linear equations, where C is a (h+ 1)×n matrix, pr is a
n-dimensional vector and q is a (h+ 1)-dimensional vector. Formula A(α, x)
(System (A.1)) can then be written as

Cpr = q ∧
k∧
i=1

n∑
j=1

ci,jpri,j 6= qi. (A.2)

Remark Appendix A.1. A disequation a1x1 + · · ·+ anxn 6= b is equisat-
isfiable with

(a1x1 + · · ·+ anxn < b) ∨ (−a1x1 − · · · − anxn < −b). (A.3)

But Formula (A.3) is not in TQ, although each of the two disjuncts is. By
Remark Appendix A.1, System (A.2) is satisfiable if and only if either

Cpr = q ∧
k∧
i=2

n∑
j=1

ci,jpri,j 6= qi ∧
n∑
j=1

c1,jpr1,j < q1
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is satisfiable or if

Cpr = q ∧
k∧
i=2

n∑
j=1

ci,jpri,j 6= qi ∧
n∑
j=1

c1,jpr1,j > q1

is satisfiable. Following this reasoning, A(α, x) can be transformed into 2k

disequation-free systems B1, B2, . . . , B2k ∈ T−Q such that A(α, x) is satisfiable
if and only if at least one of B1, B2, . . . , B2k are satisfiable. That is, A(α, x)
is satisfiable if and only if general simplex returns “satisfiable” for at least
one of B1, B2, . . . , B2k .

In fact, formulae in TQ are not yet in the correct form to be taken as input
to general simplex. Kroening and Strichman show how any formula in TQ
can be transformed into the so-called ‘general form’ required by general
simplex. We refer the reader to their book [16] for details.

general simplex allows one to set a lower bound li and an upper bound
ui for each variable xi, such that li ≤ xi ≤ ui. For our problem, we set, li = 0
and ui = 1, for i = 1, . . . , n (where xi = pri).

Let B(Γ, α, x) := {B1, B2, . . . , B2k} be induced from A(α, x) for some
node Γ. Then B(Γ, α, x) is feasible if and only if the SLI generated from
F (Γ, α, x) (cf. p. 18) is feasible.
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