Vitality of optical vortices

F Stef Roux

CSIR National Laser Centre, Pretoria, South Africa

Presented at Complex Light and Optical Force VIII SPIE Photonics West 2014 Moscone Center, San Francisco, California USA 5 February 2014

Speckle

Amplitude

Phase

Vortex conservation

Topological conservation: the net flow of topological charge into a finite region of space is zero

Conservation equations:^a

$$\partial_z n_p + \nabla \cdot \mathbf{J}_p = \mathcal{C} - \mathcal{A}$$

$$\partial_z n_n + \nabla \cdot \mathbf{J}_n = \mathcal{C} - \mathcal{A}$$

 $n_p(n_n)$ — positive (negative) vortex density $J_p(J_n)$ — current for the positive (negative) vortices C(A) — creation (annihilation) events per unit volume

^aFS Roux, Opt. Commun. 283, 4855-4858 (2010)

Conservation of V and T

For
$$V = n_p + n_n$$
 and $T = n_p - n_n$:^a
 $\partial_z V + \nabla \cdot \mathbf{J}_V = 2(\mathcal{C} - \mathcal{A})$
 $\partial_z T + \nabla \cdot \mathbf{J}_T = 0$

V — vortex density

T — topological charge density

- J_V current for the vortex density
- J_T current for the topological charge density

^aFS Roux, Opt. Commun. 283, 4855-4858 (2010)

Vortex line and critical points

Vortex location: $\mathcal{R}e\{g(\mathbf{x})\} = \mathcal{I}m\{g(\mathbf{x})\} = 0$

Sign of z component of vorticity indicate topological charge $\Omega \cdot \hat{z} = \frac{i}{2}(g_x g_y^* - g_y g_x^*) = 0,$

^aMV Berry and MR Dennis, Proc. R. Soc. Lond. A 456, 2059-2079 (2000)

Acceleration vector

Vitality

The vitality at a critical point:^a

 $\mathcal{V} = H_1 H_3 + H_2 H_4$

with

$$H_{1} = g_{xx}^{*}g_{y} + g_{xx}g_{y}^{*} + g_{yy}^{*}g_{y} + g_{yy}g_{y}^{*}$$
$$H_{2} = g_{xx}^{*}g_{x} + g_{xx}g_{x}^{*} + g_{yy}^{*}g_{x} + g_{yy}g_{x}^{*}$$
$$H_{3} = i\left(g_{xx}^{*}g_{y} - g_{xx}g_{y}^{*} - g_{xy}^{*}g_{x} + g_{xy}g_{x}^{*}\right)$$
$$H_{4} = i\left(g_{yy}^{*}g_{x} - g_{yy}g_{x}^{*} - g_{xy}^{*}g_{y} + g_{xy}g_{y}^{*}\right)$$

The sign of \mathcal{V} indicates whether the critical point is an annihilation event or a creation event.

^aFS Roux, Opt. Lett. 38, 3895-3898 (2013)

Numerical simulation

Speckle field:
$$\psi(\mathbf{x}) = \sum_{n} \chi_n \exp(-i\mathbf{k}_n \cdot \mathbf{x})$$

 χ_n — random complex coefficients \mathbf{k}_n — random propagation vectors

(\mathbf{k}_n restricted to small cone angle around *z*-axis.)

Reconstruct at series of z values \rightarrow sequence of 2D optical fields.

Annihilation example

Sign of the vitality: cyan = positive vitality red = negative vitality

Creation example

Sign of the vitality: cyan = positive vitality red = negative vitality

Summary

- Derived a quantity (the vitality) to distinguish between vortex dipole creation and annihilation events.
- Vitality is expressed in terms of the transverse 1st and 2nd order derivatives of the optical field.
- It can be used to compute the probability density for the difference of creation and annihilation events.
- Only gives unambiguous identification of the type of event at the location of a critical point.