Stochastic singular optics

F Stef Roux

CSIR National Laser Centre, Pretoria, South Africa

Presented at the International Conference on Correlation Optics 2013 Chernivtsi, Ukraine 18-20 September 2013

Contents

- Defining Stochastic Singular Optics (SSO)
- Fools of Stochastic Singular Optics
 - Numerical simulations
 - Statistical optics calculations
- Complexity in Stochastic Singular Optics
- Coordinate invariance
- Relationships among quantities

Oxymoron?

- Notion: partial coherence destroys vortices
- Hence, no vortices in stochastic optical fields
- However, not interested in individual vortices
- Instead, study related quantities:
 - vortex distributions
 - topological charge distributions
 - phase gradient
 - orbital angular momentum
- Not considering polarization

Definition of vortex distributions

- D 2D (transverse) plane as a slice (foliation) through 3D optical field, perpendicular to propagation (or arbitrary observation) direction
- Vortex is first order zero of a 2D complex field (in 3D vortex becomes a line)
- > Vortex density: number of vortices per unit area on the 2D plane, function of transverse coordinates (x, y)
- Also function of z: propagation distance z replaces time as an independent variable of causal progression
- ▷ Two types of vortices: topological charge ± 1 (higher order are unstable). Positive and negative vortex densities $n_p(x, y, z)$ and $n_n(x, y, z)$
- \triangleright Vortex density: $V = n_{\rm p} + n_{\rm n}$
- \triangleright Topological charge density: $T = n_{\rm p} n_{\rm n}$

Subfields of SSO

- Homogeneous, normally distributed (speckle):
 - \Rightarrow stationary (in equilibrium)
 - statistics of vortex distributions
 - topology of vortex lines
 - coherence vortices
- ▷ Homogeneous, not normally distributed:
 - \Rightarrow transient evolution in V, while T = 0
 - vortices in scintillated optical field in random media
 - removal of continuous phase \rightarrow dip in V
- Inhomogeneous, normally distributed:
 - \Rightarrow transient evolution in V and T
 - diffusion, phase and amplitude drift of V and T
- Inhomogeneous, not normally distributed:
 - perhaps one day

Numerical simulations

- Produce input field
 - complex sampled array
 - random, but with correlations
- Perform beam propagation

 $g(x, y, z = 0) \rightarrow G = \mathcal{F}\{g\} \rightarrow g(x, y, z) = \mathcal{F}^{-1}\{G\psi(z)\}$

- > Extract information (locate vortices)
- ▷ Perform averaging

Can be used for fields that are normally distributed or not normally distributed

New physics

Homogeneous, not normally distributed^a

^aM. Chen and F.S. Roux, Phys. Rev. A, **80**, 013824 (2009);

— J. Opt. Soc. Am. A, **27**, 2138–2143 (2010).

New physics (cont.)

Inhomogeneous, normally distributed^a

^aF.S. Roux, J. Opt. Soc. Am. A, **28**, 621–626 (2011);

- Opt. Comm., **285**, 947–952 (2012).

Statistical optics calculations

Assume normal distribution

Two step process:

- Expression of local quantity in terms of field correlation functions
 - done once
 - expressions in their most general form
- Calculation of field correlation functions
 - for every stochastic optical field
 - examples to be studied

General correlation functions

Use non-local correlation function to compute local correlation functions

▷ Mutual coherence function^a

$$\Gamma_{\text{full}}(\mathbf{x}_1, t_1, \mathbf{x}_2, t_2) = \langle g(\mathbf{x}_1, t_1) \overline{g}(\mathbf{x}_2, t_2) \rangle$$

- ▷ Monochromatic (drop time) and paraxial (set *z* equal) $\Gamma(x_1, y_1, x_2, y_2, z) = \langle g(x_1, y_1, z)\overline{g}(x_2, y_2, z) \rangle$
- $\triangleright \text{ Intensity: } I(x, y, z) = \langle g \overline{g} \rangle = \Gamma(x, y, x, y, z)$
- General two-point field correlation functions

 $\langle g \overline{g}_x \rangle = [\partial_x \langle g(u, v, z) \overline{g}(x, y, z) \rangle]_{u=x, v=y} = [\partial_x \Gamma(u, v, x, y, z)]_{u=x, v=y}$

^aJ. W. Goodman, Statistical optics (Wiley-Interscience, New York, 1985).

Expectation values

- Consider optical field and its first derivatives
- $\triangleright \text{ Expectation value of } W \text{ as a function of random variables } \mathbf{q} = \{q_n\}$

$$\langle W \rangle = \int W(\mathbf{q}) P_{\mathbf{q}}(\mathbf{q}) \, \mathrm{d}^6 q$$

▷ Joint probability density function:

$$P_{\mathbf{q}}(\mathbf{q}) = \frac{\exp\left(-\mathbf{Q}^{\dagger} M_1^{-1} \mathbf{Q}\right)}{\pi^3 \det(M_1)}$$

where $\mathbf{Q} = [q_1 + iq_2, q_3 + iq_4, q_5 + iq_6]^T$

▷ Covariance matrix:

$$M_{1} = \begin{bmatrix} \langle g \overline{g} \rangle & \langle g_{x} \overline{g} \rangle & \langle g_{y} \overline{g} \rangle \\ \langle g \overline{g}_{x} \rangle & \langle g_{x} \overline{g}_{x} \rangle & \langle g_{y} \overline{g}_{x} \rangle \\ \langle g \overline{g}_{y} \rangle & \langle g_{x} \overline{g}_{y} \rangle & \langle g_{y} \overline{g}_{y} \rangle \end{bmatrix}$$

Vortex density

Vortex density as an average^a

$$V(\mathbf{x}) = \int |q_3 q_6 - q_4 q_5| \left[P_{\mathbf{q}}(\mathbf{q}) \right]_{q_1 = q_2 = 0} \, \mathrm{d}^4 q$$

 \triangleright After evaluating *q*-integrals:

$$V(\mathbf{x}) = \frac{2\langle g\overline{g}\rangle \det(M_1) - B^2}{2\pi \langle g\overline{g}\rangle^2 \sqrt{4\langle g\overline{g}\rangle \det(M_1) - B^2}}$$

where $\det(M_1) = \langle g\overline{g} \rangle (\langle g_x \overline{g}_x \rangle \langle g_y \overline{g}_y \rangle - \langle g_y \overline{g}_x \rangle \langle g_x \overline{g}_y \rangle)$ $- \langle g_x \overline{g}_x \rangle \langle g_y \overline{g} \rangle \langle g\overline{g}_y \rangle - \langle g_y \overline{g}_y \rangle \langle g_x \overline{g} \rangle \langle g\overline{g}_x \rangle + \langle g_x \overline{g}_y \rangle \langle g_y \overline{g} \rangle \langle g\overline{g}_x \rangle$ $+ \langle g_y \overline{g}_x \rangle \langle g_x \overline{g} \rangle \langle g\overline{g}_y \rangle$ and $B = \langle g\overline{g} \rangle (\langle g_x \overline{g}_y \rangle - \langle g_y \overline{g}_x \rangle)$ $+ \langle g\overline{g}_x \rangle \langle g_y \overline{g} \rangle - \langle g_x \overline{g} \rangle \langle g\overline{g}_y \rangle$

^aM.V. Berry, J. Phys. A: Math. Gen. **11**, 27–37 (1978);

M.V. Berry and M.R. Dennis, Proc. R. Soc. Lond. A **456**, 2059–2079 (2000);

F.S. Roux, J. Opt. Soc. Am. A 28, 621–626 (2011).

Topological charge density

Description Topological charge density as an average

$$T(\mathbf{x}) = \int (q_3 q_6 - q_4 q_5) \left[P_{\mathbf{q}}(\mathbf{q}) \right]_{q_1 = q_2 = 0} \, \mathrm{d}^4 q$$

 \triangleright After evaluating *q*-integrals:

$$T(\mathbf{x}) = \frac{\mathrm{i}B}{2\pi \langle g \,\overline{g} \rangle^2}$$

where

$$B = \langle g \overline{g} \rangle (\langle g_x \overline{g}_y \rangle - \langle g_y \overline{g}_x \rangle) + \langle g \overline{g}_x \rangle \langle g_y \overline{g} \rangle - \langle g_x \overline{g} \rangle \langle g \overline{g}_y \rangle$$

Local phase gradient

- ▷ Phase of an optical field $g(\mathbf{x}) = A(\mathbf{x}) \exp[i\theta(\mathbf{x})]$: $\theta(\mathbf{x}) = \frac{-i}{2} \ln \left[\frac{g(\mathbf{x})}{\overline{g}(\mathbf{x})}\right]$
- Phase gradient

$$\nabla \theta(\mathbf{x}) = -i \frac{\overline{g}(\mathbf{x}) \nabla g(\mathbf{x}) - g(\mathbf{x}) \nabla \overline{g}(\mathbf{x})}{2|g(\mathbf{x})|^2}$$

where
$$\nabla = \hat{x}\partial_x + \hat{y}\partial_y$$

Local phase gradient as an average

$$\mathbf{F}(\mathbf{x}) = \int \frac{(q_3 q_2 - q_4 q_1)\hat{x} + (q_5 q_2 - q_6 q_1)\hat{y}}{q_1^2 + q_2^2} P_{\mathbf{q}}(\mathbf{q}) \,\mathrm{d}^6 q$$

 \triangleright After evaluating *q*-integrals:

$$\mathbf{F}(\mathbf{x}) = \mathbf{i} \frac{(\langle g \overline{g}_x \rangle - \langle g_x \overline{g} \rangle)\hat{x} + (\langle g \overline{g}_y \rangle - \langle g_y \overline{g} \rangle)\hat{y}}{2\langle g \overline{g} \rangle} = \frac{\mathbf{v}_2}{2\langle g \overline{g} \rangle}$$

Magnitude of local phase gradient

Magnitude of the local phase gradient as an average

$$F(\mathbf{x}) = \int \frac{\sqrt{(q_3 q_2 - q_4 q_1)^2 + (q_5 q_2 - q_6 q_1)^2}}{q_1^2 + q_2^2} P_{\mathbf{q}}(\mathbf{q}) \, \mathrm{d}^6 q$$

 \triangleright After evaluating *q*-integrals:

$$F(\mathbf{x}) = \frac{\sqrt{G+H}}{8\pi\sqrt{2}\langle g\,\overline{g}\rangle} \mathcal{E}\left(\sqrt{\frac{2H}{G+H}}\right)$$

where $E(\cdot)$ is the complete elliptic integral of the second kind, and *G* and *H* are rather complicated expressions.

 $\triangleright \text{ Clearly, } F(\mathbf{x}) \neq |\mathbf{F}(\mathbf{x})| \text{, because } \langle |g| \rangle \neq |\langle g \rangle| \text{.}$

Magnitude of phase gradient (cont.)

$$G = 4 \langle g \overline{g} \rangle (\langle g_x \overline{g}_x \rangle + \langle g_y \overline{g}_y \rangle) - (\langle g_x \overline{g} \rangle + \langle g \overline{g}_x \rangle)^2 - (\langle g_y \overline{g} \rangle + \langle g \overline{g}_y \rangle)^2$$

$$\begin{split} H &= \left(16\langle g\overline{g}\rangle^2 \left[(\langle g_x \overline{g}_x \rangle - \langle g_y \overline{g}_y \rangle)^2 + (\langle g_x \overline{g}_y \rangle + \langle g_y \overline{g}_x \rangle)^2 \right] \\ &- 8\langle g\overline{g}\rangle \left\{ \left[(\langle g_x \overline{g}\rangle + \langle g\overline{g}_x \rangle)^2 - (\langle g_y \overline{g}\rangle + \langle g\overline{g}_y \rangle)^2 \right] (\langle g_x \overline{g}_x \rangle - \langle g_y \overline{g}_y \rangle) \\ &+ 2(\langle g_x \overline{g}_y \rangle + \langle g_y \overline{g}_x \rangle) (\langle g\overline{g}_y \rangle + \langle g_y \overline{g} \rangle) (\langle g_x \overline{g} \rangle + \langle g\overline{g}_x \rangle) \right\} \end{split}$$

$$+\left[(\langle g_x \overline{g} \rangle + \langle g \overline{g}_x \rangle)^2 + (\langle g_y \overline{g} \rangle + \langle g \overline{g}_y \rangle)^2\right]^2\right)^{1/2}$$

Null crossing line density

Line density of null crossings

$$N(\mathbf{x}) = \frac{1}{A} \int_{A} \delta(g_q) \sqrt{\left(\partial_x g_q\right)^2 + \left(\partial_y g_q\right)^2} \, \mathrm{d}x \mathrm{d}y$$

where g_q represents either g_r or g_i .

 \triangleright After evaluating 3 *q*-integrals:

$$N(\mathbf{x}) = \frac{\sqrt{G+H}}{2\pi\sqrt{2}\langle g\,\overline{g}\rangle} \mathcal{E}\left(\sqrt{\frac{2H}{G+H}}\right)$$

 \triangleright $N(\mathbf{x}) = 4F(\mathbf{x})$, because average separation distance between null crossings is proportional to the magnitude of the local phase gradient

Quantities with higher derivatives

For up the second derivatives covariance matrix expands to rank 6:

$$M_{2} = \begin{bmatrix} \langle g\overline{g} \rangle & \langle g_{x}\overline{g} \rangle & \langle g_{y}\overline{g} \rangle & \langle g_{xx}\overline{g} \rangle & \langle g_{xy}\overline{g} \rangle & \langle g_{yy}\overline{g} \rangle \\ \langle g\overline{g}_{x} \rangle & \langle g_{x}\overline{g}_{x} \rangle & \langle g_{y}\overline{g}_{x} \rangle & \langle g_{xx}\overline{g}_{x} \rangle & \langle g_{xy}\overline{g}_{x} \rangle & \langle g_{yy}\overline{g}_{x} \rangle \\ \langle g\overline{g}_{y} \rangle & \langle g_{x}\overline{g}_{y} \rangle & \langle g_{y}\overline{g}_{y} \rangle & \langle g_{xx}\overline{g}_{y} \rangle & \langle g_{xy}\overline{g}_{y} \rangle & \langle g_{yy}\overline{g}_{y} \rangle \\ \langle g\overline{g}_{xx} \rangle & \langle g_{x}\overline{g}_{xx} \rangle & \langle g_{y}\overline{g}_{xx} \rangle & \langle g_{xx}\overline{g}_{xx} \rangle & \langle g_{xy}\overline{g}_{xx} \rangle & \langle g_{yy}\overline{g}_{xx} \rangle \\ \langle g\overline{g}_{xy} \rangle & \langle g_{x}\overline{g}_{xy} \rangle & \langle g_{y}\overline{g}_{xy} \rangle & \langle g_{xx}\overline{g}_{xy} \rangle & \langle g_{xy}\overline{g}_{xy} \rangle & \langle g_{yy}\overline{g}_{yy} \rangle \\ \langle g\overline{g}_{yy} \rangle & \langle g_{x}\overline{g}_{yy} \rangle & \langle g_{y}\overline{g}_{yy} \rangle & \langle g_{xx}\overline{g}_{yy} \rangle & \langle g_{xy}\overline{g}_{yy} \rangle & \langle g_{yy}\overline{g}_{yy} \rangle \end{bmatrix}$$

- \triangleright Higher complexity: $det(M_1) = 6$, but $det(M_2) = 720$.
- Examples of quantities: distributions of the Poincarè-Hopf indices and probability density for annihilation and creation events

Complexity in SSO

The predominant challenge is the complexity

- Expression often contain large polynomials in correlation functions
- Higher derivatives enhance the complexity significantly
- Dynamics require higher derivatives
- $\triangleright \rightarrow \text{exploit } \underline{\text{coordinate invariance}}$
- The choice of coordinate system is arbitrary (one can rotate the x- and y-axes by an arbitrary angle)
- Expression of the expectation value of quantities are not affected by coordinate transformation
- ▷ Coordinate rotation: SO(2) Lie group
- ightarrow = Expressions are (or consist of) SO(2) singlets

Coordinate transformations

▷ Reducible SO(2) transformation of covariant matrix: $M_1 \rightarrow OM_1 O^{-1},$

where

$$O = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

 α — rotation angle

▷ Irreducible SO(2) transformation, example:

$$\begin{array}{ll} \langle g \overline{g}_x \rangle \\ \langle g \overline{g}_y \rangle \end{array} \rightarrow \begin{array}{l} \langle g \overline{g}_x \rangle \cos(\alpha) - \langle g \overline{g}_y \rangle \sin(\alpha) \\ \langle g \overline{g}_y \rangle \sin(\alpha) + \langle g \overline{g}_y \rangle \cos(\alpha) \end{array}$$

 \triangleright Defined SO(2) singlets i.t.o. correlation functions (τ_n 's)

Expressions i.t.o. SO(2) singlets

▷ Topological charge density $T = \frac{\tau_0 \tau_2 - \tau_6}{2\pi \tau_0^2}$

Vortex density

$$V = \frac{2\tau_0(\tau_0\tau_7 - \epsilon_1) + (\tau_0\tau_2 - \tau_6)^2}{2\pi\tau_0^2\sqrt{4\tau_0(\tau_0\tau_7 - \epsilon_1) + (\tau_0\tau_2 - \tau_6)^2}}$$

 \triangleright Relationship among V, T and Q

$$V = \frac{Q + 2T^2}{2\sqrt{Q + T^2}} = \frac{1}{2}\sqrt{Q + T^2} + \frac{T^2}{2\sqrt{Q + T^2}}$$

Determinant

$$Q = \frac{\det(M_1)}{\pi^2 \tau_0^3} = \frac{\tau_0 \tau_7 - \epsilon_1}{\pi^2 \tau_0^3}$$

Curl of phase gradient

Using the following identities

$$\triangleright \nabla \times \mathbf{v}_{2} = 2\tau_{2}\hat{z} = i2(\langle g_{x}\overline{g}_{y}\rangle - \langle g_{y}\overline{g}_{x}\rangle)\hat{z}$$

$$\triangleright \nabla \tau_{0} \equiv \mathbf{v}_{1} = (\langle g_{x}\overline{g}\rangle + \langle g\overline{g}_{x}\rangle)\hat{x} + (\langle g_{y}\overline{g}\rangle + \langle g\overline{g}_{y}\rangle)\hat{y}$$

$$\triangleright \mathbf{v}_{1} \times \mathbf{v}_{2} = 2\tau_{6}\hat{z} = i2(\langle g_{x}\overline{g}\rangle\langle g\overline{g}_{y}\rangle - \langle g_{y}\overline{g}\rangle\langle g\overline{g}_{x}\rangle)\hat{z}$$

one can show that

$$\nabla \times \mathbf{F} = \nabla \times \left(\frac{\mathbf{v}_2}{2\tau_0}\right) = \frac{\nabla \times \mathbf{v}_2}{2\tau_0} - \frac{\nabla \tau_0 \times \mathbf{v}_2}{2\tau_0^2}$$
$$= \frac{\tau_2 \hat{z}}{\tau_0} - \frac{\mathbf{v}_1 \times \mathbf{v}_2}{2\tau_0^2} = \frac{(\tau_0 \tau_2 - \tau_6)\hat{z}}{\tau_0^2}$$
$$= 2\pi T \hat{z}$$

Intensity transport

 \triangleright The *z*-derivative to the intensity $\tau_0 = \langle g \overline{g} \rangle$

$$\partial_z \tau_0 = \frac{-\mathrm{i}}{2k} \left(\langle g_{xx} \overline{g} \rangle - \langle g \overline{g}_{xx} \rangle + \langle g_{yy} \overline{g} \rangle - \langle g \overline{g}_{yy} \rangle \right) = \frac{\nabla \cdot \mathbf{v}_2}{2k}$$

▷ The divergence of the phase gradient

$$\nabla \cdot \mathbf{F} = \nabla \cdot \left(\frac{\mathbf{v}_2}{2\tau_0}\right) = \frac{\nabla \cdot \mathbf{v}_2}{2\tau_0} - \frac{\nabla \tau_0 \cdot \mathbf{v}_2}{2\tau_0^2} = \frac{k\partial_z \tau_0}{\tau_0} - \frac{\nabla \tau_0 \cdot \mathbf{F}}{\tau_0}$$

▷ The intensity transport equation^a

$$k\partial_z \tau_0 = \tau_0 \nabla \cdot \mathbf{F} + (\nabla \tau_0) \cdot \mathbf{F} = \nabla \cdot (\tau_0 \mathbf{F})$$

^aM.R. Teague, J. Opt. Soc. Am. **72**, 1199–1209 (1982).

Summary

- Introduced the field (and subfields) of Stochastic Singular Optics
- Numerical simulations reveals some new physics things we don't understand yet
- Statistical optics calculations provide expressions for various quantities
- Complexity of these expressions and their derivatives is a challenges in Stochastic Singular Optics, but ...
- Coordinate invariance gives SO(2) singlets in terms of which expressions become simpler, as a result ...
- Identified some (algebraic and differential) relationships among the different quantities