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Oxymoron?

> Notion: partial coherence destroys vortices
> Hence, no vortices in stochastic optical fields
> However, not interested in individual vortices

> |Instead, study related quantities:
— vortex distributions
— topological charge distributions
— phase gradient
— orbital angular momentum

> Not considering polarization
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Definition of vortex distributions

>

2D (transverse) plane as a slice (foliation) through 3D
optical field, perpendicular to propagation (or arbitrary
observation) direction

Vortex Is first order zero of a 2D complex field (in 3D
vortex becomes a line)

Vortex density: number of vortices per unit area on the
2D plane, function of transverse coordinates (x, y)

Also function of z: propagation distance z replaces time
as an independent variable of causal progression

Two types of vortices: topological charge +1 (higher
order are unstable). Positive and negative vortex
densities n,(z,y, z) and ny(z, y, 2)

Vortex density: V =np, + ny
Topological charge density: T' = n, — ny
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Subfields of SSO

> Homogeneous, normally distributed (speckle):
= stationary (in equilibrium)

— statistics of vortex distributions
— topology of vortex lines
— coherence vortices
> Homogeneous, not normally distributed:
= transient evolution in V', while T" = 0
— vortices In scintillated optical field in random media
— removal of continuous phase — dip in V/
> Inhomogeneous, normally distributed:
= transient evolution in V and T’
— diffusion, phase and amplitude drift of V and T

> Inhomogeneous, not normally distributed:
— perhaps one day
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Numerical simulations

> Produce input field
— complex sampled array
— random, but with correlations

> Perform beam propagation

9(z,y,2=0) = G =F{g} = g(z,y,2) = F {Gy(2)}

> Extract information (locate vortices)
> Perform averaging

Can be used for fields that are normally distributed or not
normally distributed
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New physics

Homogeneous, not normally distributed?
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M. Chen and F.S. Roux, Phys. Rev. A, 80, 013824 (2009);
— J. Opt. Soc. Am. A, 27, 2138-2143 (2010).
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New physics (cont.)

Inhomogeneous, normally distributed?
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®F.S. Roux, J. Opt. Soc. Am. A, 28, 621-626 (2011);
— Opt. Comm., 285, 947-952 (2012).
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Statistical optics calculations

Assume normal distribution

Two step process:

> Expression of local quantity
In terms of field correlation functions

— done once
— expressions in their most general form

> Calculation of field correlation functions
— for every stochastic optical field
— examples to be studied
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General correlation functions

Use non-local correlation function to compute local
correlation functions

> Mutual coherence function®
Lean(x1, 81, X2, t2) = (g(x1,11)g9(x2,t2))
> Monochromatic (drop time) and paraxial (set =z equal)
F<x17 Yi,12,Y2, Z) — <g(ZC1, Yi, Z)§<£C2, Yo, Z)>

> Intensity: I(z,y,2) = {(99) = I'(z,y, 2,9, 2)
> General two-point field correlation functions
<g§$> — [833 <g(u7 v’ Z)?('CC? y7 Z)>]u=33,vzy — [axr(u7 v? x? y? Z)]’U,:CE,’U:’y

2J. W. Goodman, Statistical optics (Wiley-Interscience, New York, 1985).
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Expectation values

> Consider optical field and its first derivatives

> EXpectation value of ¥ as a function of random

variables q = {q, }

W) = / W (q)Py(q) d

> Joint probability density function:

Pq(Ol) —

_exp (-QTM, Q)

7T3 det(Ml)

, . T
where Q = [¢1 + igo, g3 + iqa, g5 + igs]

> Covariance matrix:

My

(99)  (9.9) (9,9)
(99:) (9292) (9492)
(99,) (929,) (9,9,)
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Vortex density

> Vortex density as an averages

= / 4396 — 45| [Pa(@)]y, —g,—0 d"d

> After evaluating ¢-integrals:
2(gg)det(M;) — B?

Ve = 2m(gg)%\/4(gg)det(M,) — B

where det(M1) = (99)((929.)(9,9y) — (9492)(92Ty))
~(9292)(9,9)(99,) —(949,)(9:9)(9G2) +(9:9,)(9,9)(9T)
9y

9,
+(9,9:)(9,9)(99,) @ and B — (99)({9.9,) — (9,92))
+(99:)(9,9) — (9:9)(99,)

9z
Gy

M.V. Berry, J. Phys. A: Math. Gen. 11, 27-37 (1978);
M.V. Berry and M.R. Dennis, Proc. R. Soc. Lond. A 456, 2059-2079 (2000);
F.S. Roux, J. Opt. Soc. Am. A 28, 621-626 (2011).
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Topological charge density

> Topological charge density as an average

T(x) = / (4396 — 9495) [Pa ()], —y,—0 '

> After evaluating g¢-integrals:




Local phase gradient

> Phase of an optical field g(x) = A(x) exp[if(x)]:

fx) = o In [@]

g(x)

> Phase gradient

g(x)Vyg(x) — g(x)Vg(x)
VO =TT e

where V = 29, + 90,
> Local phase gradient as an average

Pix) — (9392 — q4q1)T + (592 — q6q1)Y
(X) o (]% n (]%

Pq(OI) dGC]

> After evaluating ¢-integrals:

P 1 (972) = (9292 + (97,) — (0,80 __ve

2(97) 2(979)




Magnitude of local phase gradient

> Magnitude of the local phase gradient as an average

(392 — qm (Q5Q2 — q6q1)?
/ \/ Pq(‘l) d6q
@G+ @

> After evaluating ¢-integrals:

_ VG+H 2H
P = vt (\/G T H)

where E(-) Is the complete elliptic integral of the second
kind, and G and H are rather complicated expressions.

> Clearly, F(x) # [F(x)|, because (|g]) 7 [(g)].
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Magnitude of phase gradient (cont.)

G = 4(99)({9,7.) +(9,7,)) — ({9.9) +{97.))* — ((9,3) + (97,))°

H = (16(99)* [((923.) — (9,9,))* + ((923,) + (9,T:))°]

—8(99) {[({9.9) + (97.))* — ({9,3) + (9T,))*] ({92T) — (9,,T,))

+2((9.9,) + (9,9.))(99,) + (9,9))(9.9) + (97.)) }

+ ((9,9) + (99,))°]

+ [((929) + (97.))° 9y))° 2)1/2



Null crossing line density

> Line density of null crossings

Ve = [ 800 0can)” + 0,9,)" dndy

where g, represents either g, or g;.

> After evaluating 3 ¢-integrals:
VG + H \/ 2H
N(x) = E
X = il Ve

> N(x) = 4F(x), because average separation distance
between null crossings is proportional to the magnitude
of the local phase gradient
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Quantities with higher derivatives

> For up the second derivatives covariance matrix
expands to rank 6:

99)  (9.9)  (9,9)  (9229) (9y9) (94 9)
99:)  (929:)  (9y92)  (92292)  (92yG2)  (9yyTa)
99,)  (9.9y)  $949y)  (9w2Ty)  (GayTy)  (GyyTy)
(9920) (92922) (9yTzz) (J22902) GuyTaz) (9yyTaz)
(9G2y) (929uy) (9yTay) (J22Tuy) GoyTay) (GyyTay)
(99yy) (920yy) GyTyy) (J220yy) GayTyy)  (GyyTyy)

> Higher complexity: det(M7) = 6, but det(Ms) = 720.

> Examples of quantities: distributions of the
Poincare-Hopf indices and probability density for
annihilation and creation events
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Complexity iIn SSO

The predominant challenge is the complexity

>

AV VAR VAR V4

EXxpression often contain large polynomials in
correlation functions

Higher derivatives enhance the complexity significantly
Dynamics require higher derivatives
— exploit coordinate invariance

The choice of coordinate system is arbitrary (one can
rotate the z- and y-axes by an arbitrary angle)

Expression of the expectation value of quantities are
not affected by coordinate transformation

Coordinate rotation: SO(2) Lie group
= Expressions are (or consist of) SO(2) singlets
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Coordinate transformations

> Reducible SO(2) transformation of covariant matrix:
My — OMlO_l,
where _ _
1 0 0
O= |0 cos() —sin(a)

0 sin(a) cos(a)

o — rotation angle
> lrreducible SO(2) transformation, example:

(992) _, {99a) cos(@) — (g7,) sin(e)

(99,) (9G,) sin(a) + (g7, cos(a)

> Defined SO(2) singlets I.t.0. correlation functions (7,,'s)
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Expressions 1.t.0. SO(2) singlets

T072 — 76

2

> Topological charge density T =
27T

> Vortex density

v 270(7077—61)+(TQTQ—76)2

27773 \/470(7'07'7 —€1) + (012 — T6)

2

> Relationship among V, T"and @)

Q + 277 1
24/Q + T2 2\/Q+

> Determinant

T2
_I_
2,/Q + T2
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Curl of phase gradient

Using the following identities

> V X vy =272 =12((9,9,) — (9,9.))%
> V1o =vi = ((9.9) +(99.))% + ({9,9) + (99,))7

> vi X Vo = 2762 = 12((9,9)(99y) — (9,9)(99:))2
one can show that

VxF = Vx E :VXVQ_V70>;V2
270 270 27,

7‘22 Vi X V9 (7‘()7‘2 — 7‘6)7:’

T0 27’3 Tg
= 2112
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Intensity transport

> The z-derivative to the intensity 7o = (¢g)

V-Vz
2k

070 = o (02008 — (9Ta) + (9,,8) — (67,)) =

> The divergence of the phase gradient

VF:V<E> _V VQ_VTQ VQ_ICC{)TO_VTO

270 - 270 27’3 B T0 T0

> The intensity transport equation?

/6827'0 — T()V -F + (VT()) -F=V- (T()F)

*M.R. Teague, J. Opt. Soc. Am. 72, 1199-1209 (1982).
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Summary

Introduced the field (and subfields) of Stochastic
Singular Optics

Numerical simulations reveals some new physics —
things we don’t understand yet

Statistical optics calculations provide expressions for
various guantities

Complexity of these expressions and their derivatives Is
a challenges in Stochastic Singular Optics, but ...

Coordinate invariance gives SO(2) singlets in terms of
which expressions become simpler, as a result ...

ldentified some (algebraic and differential) relationships
among the different quantities
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